4.6 Article

Polarons in perovskite solar cells: effects on photovoltaic performance and stability

期刊

JOURNAL OF PHYSICS-ENERGY
卷 5, 期 2, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/2515-7655/acb96d

关键词

perovskite solar cell; polaron; mobility; charge transport

向作者/读者索取更多资源

Organic-inorganic hybrid perovskites exhibit unique photophysical properties and are promising candidates for optoelectronic devices. Recent investigations have revealed that these properties are due to the formation of large polarons in the perovskite crystals, resulting from the coupling of photogenerated carriers and a polarized crystal lattice. This significantly affects the carrier transport dynamics and structural stability of perovskite solar cells.
Organic-inorganic hybrid perovskites manifest unique photophysical properties in terms of their long carrier lifetime, low recombination rate, and high defect tolerance, enabling them to be promising candidates in optoelectronic devices. However, such advanced properties are unexpected in perovskite materials with moderate charge mobility. Recent investigations have revealed that these appealing properties were endowed due to the formation of large polarons in the perovskite crystals, resulting from the coupling of photogenerated carriers and a polarized crystal lattice, which largely affected the carrier-transport dynamics and structural stability of perovskite solar cells (PSCs). In this review, first the crystal structure of the perovskite lattice and the formation mechanism of polarons are elucidated. Then, the modulation of polaron states in PSCs, including large polaron stabilization, polaron-facilitated charge transport, hot-carrier solar cells, and polaron-related stability issues such as polaron-induced metastable defects, polaronic strain, and photostriction are systematically investigated. Finally, the prospect of further understanding and manipulating polaron-related phenomena, working toward highly efficient and stable PSCs, is suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据