4.7 Article

Ensemble Machine Learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites

期刊

出版社

ELSEVIER
DOI: 10.1016/j.cscm.2022.e01537

关键词

Machine Learning; CNT-reinforced cement -based composites; Mechanical attributes; Predictive models; Sensitivity analysis

向作者/读者索取更多资源

This study provides a correlation between the structural performance and mechanical properties of carbon nano-tubes reinforced cementitious composites through efficient predictive Machine Learning models. Random Forest and Gradient Boosting Machine were implemented for predicting the properties, and the results show that the GBM model performs better.
Time and cost-efficient techniques are essential to avoid extra conventional experimental studies with large data-set for material characterization of composite materials. This study is aimed at providing a correlation between the structural performance and mechanical properties of carbon nano-tubes reinforced cementitious composites through efficient predictive Machine Learning (ML) models. The Flexural (FS) and Compressive (CS) Strength of Carbon Nanotube (CNT)-reinforced composites were predicted based on the data-rich framework provided in the litera-ture. Two different ensembled ML methods including Random Forest (RF) and Gradient Boosting Machine (GBM) were implemented on those data for predicting the CNT-reinforced cement-based composites. Data-set were utilized for training the proposed models through employing SciKit-Learn library in Python, followed by hyper-parameter tuning and k-fold cross-validation method for obtaining an optimum model to predict the target values. It was shown that the CS values predicted by the proposed models were more accurate than the FS counterparts and the developed model of GBM has less sensitivity to the alteration of test data than the proposed RF model. Finally, sensitivity analysis was conducted through Sobol algorithm and the parameters with highest contribution were identified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据