4.8 Review

The Hydric Effect in Inorganic Nanomaterials for Nanoelectronics and Energy Applications

期刊

ADVANCED MATERIALS
卷 27, 期 26, 页码 3850-3867

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201500546

关键词

-

资金

  1. National Basic Research Program of China [2015CB932302]
  2. National Natural Science Foundation of China [21222101, U1432133, 11132009, 21331005, 11321503, J1030412]
  3. Chinese Academy of Science [XDB01020300]
  4. Fok Ying-Tong Education Foundation, China [141042]
  5. Fundamental Research Funds for the Central Universities [WK2060190027]

向作者/读者索取更多资源

Protons, as one of the world's smallest ions, are able to trigger the charge effect without obvious lattice expansion inside inorganic materials, offering a unique and important test-bed for controlling their diverse functionalities. Arising from the high chemical reactivity of hydrogen (easily losing an electron) with various main group anions (easily accepting a proton), the hydric effect provides a convenient and environmentally benign route to bring about fascinating new physicochemical properties, as well as to create new inorganic structures based on the old lattice without dramatically destroying the pristine structure, covering most inorganic materials. Moreover, hydrogen atoms tend to bond with anions or to produce intrinsic defects, both of which are expected to inject extra electrons into lattice framework, promising advances in control of bandgap, spin behavior, and carrier concentration, which determine functionality for wide applications. In this review article, recently developed effective hydric strategies are highlighted, which include the conventional hydric reaction under high temperature or room temperature, proton irradiation or hydrogen plasma treatment, and gate-electrolyte-driven adsorption or doping. The diverse physicochemical properties brought by the hydric effect via modulation of the intrinsic electronic structure are also summarized, finding wide applications in nanoelectronics, energy applications, and catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据