4.6 Article

Porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper-manganese alloy studied by in situ resistometry

期刊

NANOSCALE ADVANCES
卷 5, 期 2, 页码 393-404

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2na00618a

关键词

-

向作者/读者索取更多资源

The synthesis of bulk nanoporous copper from a copper-manganese alloy by electrochemical dealloying and free corrosion, as well as the electrochemical behavior and oxide formation of the dealloyed structures, have been investigated. The nanoporous copper exhibited suppressed reordering processes and the formation of a hybrid composite of copper and manganese oxide on its surface. This unique heterogeneous structure shows potential for applications in energy storage and catalysis.
The synthesis of bulk nanoporous copper (npCu) from a copper-manganese alloy by electrochemical dealloying and free corrosion as well as the electrochemical behaviour of the dealloyed structures is investigated by in situ resistometry. In comparison to the well-established nanoporous gold (npAu) system, npCu shows strongly suppressed reordering processes in the porous structure (behind the etch front), which can be attributed to pronounced manganese oxide formation. Characteristic variations with the electrolyte concentration and potential applied for dealloying could be observed. Cyclic voltammetry was used to clarify the electrochemical behaviour of npCu. Oxide formation is further investigated by SEM and EDX revealing a hybrid composite of copper and manganese oxide on the surface of a metallic copper skeleton. Platelet-like structures embedded in the porous structure are identified which are rich in manganese oxide after prolonged dealloying. As an outlook, this unique heterogeneous structure with a large surface area and the inherent properties of manganese and copper oxides may offer application potential for the development of electrodes for energy storage and catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据