4.7 Article

A High-Precision Crop Classification Method Based on Time-Series UAV Images

期刊

AGRICULTURE-BASEL
卷 13, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/agriculture13010097

关键词

UAV; time-series; object-oriented; crop; classification

类别

向作者/读者索取更多资源

This study proposes a method for high-precision crop classification using time-series UAV images. The spectral and texture features of crops were successfully fused by calculating the separability of samples and deriving texture characteristics. Random forest algorithm achieved the highest accuracy in both pixel-based and object-oriented crop classification. The results provide valuable insights for crop area statistics and precision agriculture management.
Timely and accurate information on crop planting structures is crucial for ensuring national food security and formulating economic policies. This study presents a method for high-precision crop classification using time-series UAV (unmanned aerial vehicle) images. Before constructing the time-series UAV images, Euclidian distance (ED) was utilized to calculate the separability of samples under various vegetation indices. Second, co-occurrence measures and the gray-level co-occurrence matrix (GLCM) were employed to derive texture characteristics, and the spectral and texture features of the crops were successfully fused. Finally, random forest (RF) and other algorithms were utilized to classify crops, and the confusion matrix was applied to assess the accuracy. The experimental results indicate the following: (1) Time-series UAV remote sensing images considerably increased the accuracy of crop classification. Compared to a single-period image, the overall accuracy and kappa coefficient increased by 26.65% and 0.3496, respectively. (2) The object-oriented classification method was better suited for the precise classification of crops. The overall accuracy and kappa coefficient increased by 3.13% and 0.0419, respectively, as compared to the pixel-based classification results. (3) RF obtained the highest overall accuracy and kappa coefficient in both pixel-based and object-oriented crop classification. RF's producer accuracy and user accuracy for cotton, spring wheat, cocozelle, and corn in the study area were both more than 92%. These results provide a reference for crop area statistics and agricultural precision management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据