4.5 Article

Concepts and Misconceptions Concerning the Influence of Divalent Ions on the Performance of Reverse Electrodialysis Using Natural Waters

期刊

MEMBRANES
卷 13, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/membranes13010069

关键词

salinity gradient power; salinity gradient energy; renewable energy; blue energy; multivalent ions; divalent ions; ion exchange membranes; membrane resistance

向作者/读者索取更多资源

The aim of this study was to investigate the negative effects of divalent ions on the power and efficiency of the reverse electrodialysis (RED) process. Two widely shared misconceptions were found, one regarding the role of stack voltage in uphill transport of divalent ions and the other regarding the methodology used to study the effect of divalent ions. The implications of these results suggest the need for more structured research on the effect of divalent ions in membrane processes.
Divalent ions have a negative effect on the obtained power and efficiency of the reverse electrodialysis (RED) process when using natural waters. These effects can largely be attributed to the interaction between the various ions and the membranes, resulting in a decreased membrane voltage, an increased membrane resistance, and uphill transport of divalent ions. The aim of this study was to investigate the causes of these differences and, if possible, to find underlying causes. The approach mainly followed that in literature articles that specifically focused on the effect of divalent ions on RED. It transpired that seven publications were useful because the methodology was well described and sufficient data was published. I found two widely shared misconceptions. The first concerns the role of the stack voltage in uphill transport of divalent ions; itis often thought that the open circuit voltage (OCV) must be taken into account, but it is plausible that the voltage under working conditions is the critical factor. The second debatable point concerns the methodology used to make a series of solutions to study the effect of divalent ions. Typically, solutions with a constant number of moles of salt are used; however, it is better to make a series with a constant ratio of equivalents of those salts. Moreover, it is plausible that the decreased voltage can be explained by the inherently lower Donnan potential of multi-charged ions and that increased resistance is caused by the fact that divalent ions-with a lower mobility there than the monovalent ions-occupy relatively much of the available space in the gel phase of the membrane. While both resistance and voltage play a decisive role in RED and probably also in other membrane processes like electrodialysis (ED), it is remarkable that there are so few publications that focus on measurements on individual membranes. The implications of these results is that research on the effect of divalent ions in RED, ED and similar processes needs to be more structured in the future. Relatively simple procedures can be developed for the determination of membrane resistance in solutions of mixtures of mono- and divalent salts. The same applies to determining the membrane potential. The challenge is to arrive at a standard method for equipment, methodology, and the composition of the test solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据