4.5 Review

State-of-the-Art of Polymer/Fullerene C60 Nanocomposite Membranes for Water Treatment: Conceptions, Structural Diversity and Topographies

期刊

MEMBRANES
卷 13, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/membranes13010027

关键词

polymer; fullerene C-60; nanocomposite; membrane; nanofiltration; permeability; selectivity; salt rejection; water treatment

向作者/读者索取更多资源

Securing existing water resources is crucial and several advanced water treatment technologies have been developed. The development of water filtration membranes for desalination, ion permeation, and microbes handling is considered the most successful methodology. Polymer/fullerene nanocomposite membranes have important applications in water treatment, leading to revolutions in high-performance membranes.
To secure existing water resources is one of the imposing challenges to attain sustainability and ecofriendly world. Subsequently, several advanced technologies have been developed for water treatment. The most successful methodology considered so far is the development of water filtration membranes for desalination, ion permeation, and microbes handling. Various types of membranes have been industrialized including nanofiltration, microfiltration, reverse osmosis, and ultrafiltration membranes. Among polymeric nanocomposites, nanocarbon (fullerene, graphene, and carbon nanotubes)-reinforced nanomaterials have gained research attention owing to notable properties/applications. Here, fullerene has gained important stance amid carbonaceous nanofillers due to zero dimensionality, high surface areas, and exceptional physical properties such as optical, electrical, thermal, mechanical, and other characteristics. Accordingly, a very important application of polymer/fullerene C-60 nanocomposites has been observed in the membrane sector. This review is basically focused on talented applications of polymer/fullerene nanocomposite membranes in water treatment. The polymer/fullerene nanostructures bring about numerous revolutions in the field of high-performance membranes because of better permeation, water flux, selectivity, and separation performance. The purpose of this pioneering review is to highlight and summarize current advances in the field of water purification/treatment using polymer and fullerene-based nanocomposite membranes. Particular emphasis is placed on the development of fullerene embedded into a variety of polymer membranes (Nafion, polysulfone, polyamide, polystyrene, etc.) and effects on the enhanced properties and performance of the resulting water treatment membranes. Polymer/fullerene nanocomposite membranes have been developed using solution casting, phase inversion, electrospinning, solid phase synthesis, and other facile methods. The structural diversity of polymer/fullerene nanocomposites facilitates membrane separation processes, especially for valuable or toxic metal ions, salts, and microorganisms. Current challenges and opportunities for future research have also been discussed. Future research on these innovative membrane materials may overwhelm design and performance-related challenging factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据