4.7 Article

Single Plane Illumination Microscopy for Microfluidic Device Imaging

期刊

BIOSENSORS-BASEL
卷 12, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/bios12121110

关键词

light sheet fluorescence microscopy; microfluidic devices; live-cell imaging

资金

  1. Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion [TEC2016-78052, PID2019-109820RB-I00]
  2. MCIN/AEI
  3. European Regional Development Fund (ERDF), A way of making Europe
  4. Ministerio de Ciencia, Innovacion y Universidades, Spain [FPU20/01459]
  5. Ministerio de Economia y Competitividad [FIS2020-115088RB-I00]
  6. Horizon 2020 Framework Programme [801347-SENSITIVE]

向作者/读者索取更多资源

This manuscript presents a novel architecture of a single-plane illumination microscopy (SPIM) for high-resolution imaging of live processes at a cellular level. The custom-made microscope overcomes limitations of existing techniques, achieving high-speed acquisition capabilities, low phototoxicity, and low mechanical disturbances, and demonstrating excellent imaging performance in microfluidic devices.
Three-dimensional imaging of live processes at a cellular level is a challenging task. It requires high-speed acquisition capabilities, low phototoxicity, and low mechanical disturbances. Three-dimensional imaging in microfluidic devices poses additional challenges as a deep penetration of the light source is required, along with a stationary setting, so the flows are not perturbed. Different types of fluorescence microscopy techniques have been used to address these limitations; particularly, confocal microscopy and light sheet fluorescence microscopy (LSFM). This manuscript proposes a novel architecture of a type of LSFM, single-plane illumination microscopy (SPIM). This custom-made microscope includes two mirror galvanometers to scan the sample vertically and reduce shadowing artifacts while avoiding unnecessary movement. In addition, two electro-tunable lenses fine-tune the focus position and reduce the scattering caused by the microfluidic devices. The microscope has been fully set up and characterized, achieving a resolution of 1.50 mu m in the x-y plane and 7.93 mu m in the z-direction. The proposed architecture has risen to the challenges posed when imaging microfluidic devices and live processes, as it can successfully acquire 3D volumetric images together with time-lapse recordings, and it is thus a suitable microscopic technique for live tracking miniaturized tissue and disease models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据