4.7 Article

Selective sensing of DNA/RNA nucleobases by metal-functionalized silicon nanowires: A DFT approach

期刊

SURFACES AND INTERFACES
卷 36, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.surfin.2022.102529

关键词

Silicon nanowires; Sensors; DNA; RNA; DFT; Nucleobases

向作者/读者索取更多资源

Ultrasensitive chemical sensors based on silicon nanowires are fast, non-invasive, compatible with current semiconductor technology, and biocompatible. This study investigates the interaction between single nucleobases and SiNWs decorated with Cu, Ag, and Au atoms, and demonstrates their potential use as nucleobase detectors or carriers. Numerical results show significant changes in the nanowire's band gap and adsorption energies for each nucleobase.
Ultrasensitive chemical sensors based on silicon nanowires (SiNW) are optimal for detection of biological species, since they are fast and non-invasive, their fabrication is compatible with current semiconductor technology, and silicon is a biocompatible material. SiNW-based DNA sensors are well known, but there are few studies regarding the interaction of SiNWs with the single DNA/RNA nucleobases: Guanine (G), Cytosine (C), Adenine (A), Thymine (T), and Uracil (U). This work uses Density Functional Theory to study the interaction between the single nucleobases and SiNWs decorated with Cu, Ag and Au atoms, to determine their potential use as nudeobase detectors or carriers, or even to use nucleobase-functionalized SiNWs as sensing platform for other chemical species. Numerical results show remarkable changes of the nanowire's band gap upon adsorption of nucleobases. Likewise, the adsorption energies of the nucleobases on the functionalized SiNW follow the trend C > G > A > T > U. Cu-functionalized nanowires are suitable for the electrical detection of cytosine, while Au-functionalized nanowires may detect thymine and uracil. On the other hand, large variations of the nanowire work function were found when guanine and adenine are adsorbed on Cu-functionalized nanowires.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据