4.7 Article

PEO/Polymer hybrid coatings on magnesium alloy to improve biodegradation and biocompatibility properties

期刊

SURFACES AND INTERFACES
卷 36, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.surfin.2022.102495

关键词

Surface engineering; Plasma electrolytic oxidation; Biodegradable magnesium alloy; Poly trimethylene carbonate; Polydopamine; Corrosion behaviour; Cellular response

向作者/读者索取更多资源

There is a growing trend to replace permanent implants with biodegradable magnesium implants in temporary bone applications. This is due to the similar mechanical properties and biocompatibility of magnesium to bone. However, the rapid degradation rate of magnesium can lead to implant loosening. This study aims to develop a multifunctional multilayer coating to control the degradation behavior.
There is an increasing tendency towards replacing permanent implants with biodegradable magnesium implants in temporary bone applications like screws and pins. This inclination arises from the close mechanical properties and biocompatibility of magnesium (Mg) to bone. Nonetheless, the high degradation rate of Mg can be a reason for implant loosening even in the early weeks after implantation. This study aims to design a multifunctional multilayered coating based on a combination of inorganic and organic layers for controlling the degradation behaviour. An inorganic layer was created on the substrate of magnesium alloy, AZ31B Mg, via plasma elec-trolytic oxidation (PEO) process while an organic layer of elastic poly trimethylene carbonate (PTMC) polymer was deposited by dip coating in the vacuum condition to have open pores of the PEO layer sealed. Subsequently, the coating was functionalized with a biomimetic polydopamine layer. The electrochemical corrosion mea-surements in simulated body fluid (SBF) showed the resistance against corrosion increases after deposition of the polydopamine functionalized PTMC on the PEO layer. In-vitro investigations in SBF evaluated the bioactivity of the multilayered coating. Moreover, MTT assays did not show cytotoxicity in the coating. Cell culture evaluations helped to determine the cell spreading and adhesion on the multilayered coating. Based on our findings, the fabricated layered composite on the biodegradable AZ31B alloy would add privileges to the sector of temporary implants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据