4.6 Review

Extracellular Vesicles: New Classification and Tumor Immunosuppression

期刊

BIOLOGY-BASEL
卷 12, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/biology12010110

关键词

extracellular vesicle; exosome; autophagy; amphisome; matrix vesicle; cellular communication; tumor microenvironment; immunosuppression; immune evasion; therapy resistance

类别

向作者/读者索取更多资源

Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules and deliver them to recipient cells. They can be classified into classical EVs (exosomes, microvesicles, and apoptotic bodies) and additional types (autophagic EVs, matrix vesicles, and stressed EVs). EVs are involved in the communication between cancer cells and tumor-associated cells (TAC), leading to the establishment of immunosuppressive and chemoresistant microenvironments. Cancer EVs play important roles in immunosuppression, immune evasion, and cellular transformation, and can change hot tumors into cold ones.
Simple Summary Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules and deliver them to recipient cells. Classical EVs are exosomes, microvesicles, and apoptotic bodies. This review classifies classical and additional EV types, including autophagic EVs, matrix vesicles, and stressed EVs. Of note, matrix vesicles are key components interacting with extracellular matrices (ECM) in the tumor microenvironment. We also review how EVs are involved in the communication between cancer cells and tumor-associated cells (TAC), leading to establishing immunosuppressive and chemoresistant microenvironments. These include cancer-associated fibroblasts (CAF), mesenchymal stem cells (MSC), blood endothelial cells (BEC), lymph endothelial cells (LEC), and immune cells, such as tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), dendritic cells, natural killer cells, killer T cells, and immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells (MDSC). Exosomal long noncoding RNA (lncRNA), microRNA, circular RNA, piRNA, mRNA, and proteins are crucial in communication between cancer cells and TACs for establishing cold tumors. Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据