4.6 Article

Structure and Function Analysis of Cultivated Meconopsis integrifolia Soil Microbial Community Based on High-Throughput Sequencing and Culturability

期刊

BIOLOGY-BASEL
卷 12, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/biology12020160

关键词

Meconopsis integrifolia; soil microorganism; high-throughput sequencing; cultivable method

类别

向作者/读者索取更多资源

The composition, function, and interactions of the soil microbial community of cultivated Meconopsis integrifolia were studied using high-throughput sequencing technology and culturing methods. Soil bacteria are involved in nutrient cycling, and mycorrhizal fungi form symbioses with plants. Both bacteria and fungi adopt a more synergistic and cooperative strategy to promote overall metabolic efficiency in extreme habitats, but at the expense of reduced ecological stability. These results are valuable for the conservation of endangered Meconopsis integrifolia and the exploitation of its medicinal value.
Simple Summary The composition, function, and interactions of the soil microbial community of cultivated Meconopsis integrifolia are characterized by high-throughput sequencing technology and culturing methods. Soil bacteria are mainly involved in nutrient cycling, and mycorrhizal fungi form symbioses with plants. Both bacteria and fungi adopt a more synergistic and cooperative-oriented strategy to promote overall metabolic efficiency toward maintaining survival in extreme habitats and at the expense of reduced ecological stability. The results of this study offer great guidance for the conservation of endangered wild resources of Meconopsis integrifolia and the exploitation of its medicinal value. (1) Background: The structure, function, and community interactions of soil microbial communities of cultivated Meconopsis integrifolia were characterized by studying this alpine flower and traditional endangered Tibetan medicine. (2) Methods: Soil bacteria and fungi were studied based on high-throughput sequencing technology. Bacteria were isolated using culturomics and functionally identified as IAA-producing, organic phosphorus-dissolving, inorganic phosphorus-dissolving, and iron-producing carriers. (3) Results: The dominant bacterial phyla were found to be Proteobacteria and Acidobacteria, and unclassified_Rhizobiales was the most abundant genus. Ascomycota and Mortierellomycota were the dominant fungal phyla. The bacteria were mainly carbon and nitrogen metabolizers, and the fungi were predominantly Saprotroph-Symbiotroph. The identified network was completely dominated by positive correlations, but the fungi were more complex than the bacteria, and the bacterial keystones were unclassified_Caulobacteraceae and Pedobacter. Most of the keystones of fungi belonged to the phyla Ascomycetes and Basidiomycota. The highest number of different species of culturable bacteria belonged to the genus Streptomyces, with three strains producing IAA, 12 strains solubilizing organic phosphorus, one strain solubilizing inorganic phosphorus, and nine strains producing iron carriers. (4) Conclusions: At the cost of reduced ecological stability, microbial communities increase cooperation toward promoting overall metabolic efficiency and enabling their survival in the extreme environment of the Tibetan Plateau. These pioneering results have value for the protection of endangered Meconopsis integrifolia under global warming and the sustainable utilization of its medicinal value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据