4.7 Article

Large eddy simulation of flame and thermal-acoustic characteristics in a strut-based scramjet with dynamic thickened flame model

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csite.2022.102560

关键词

Supersonic combustion; Thermal-acoustic coupling; Large eddy simulation; Dynamic thickened flame model; Proper orthogonal decomposition

向作者/读者索取更多资源

In this study, Large Eddy Simulation is used to simulate a strut-stabilized model scramjet, considering both flame thickening and turbulence/flame interaction. The complex physical phenomena in supersonic reactive flow are predicted efficiently, and the results show good agreement with experimental data. The flame structure and heat release rate are comprehensively analyzed, and the thermal-acoustic coupling as well as multiple factors causing oscillation characteristics are discussed.
Supersonic combustion is a complex phenomenon with multi-physical coupling, and the thermal acoustic coupling under supersonic inflow is also a matter of concern. In this work, Large Eddy Simulation of a strut-stabilized model scramjet is performed with dynamic thickened flame combustion model, and an efficiency function accounting for both, wrinkling loss due to flame thickening and turbulence/flame interaction. The finite-rate chemistry model and a skeletal hydrogen reaction mechanism with 9 species and 27 reactions are adopted. The method allows to predict the complex physical in supersonic reactive flow efficiently and the results are in good agreement with experimental. A comprehensive analysis of the Damko center dot hler number, modified flame index and heat release rate is conducted to investigate the flame structure under shock waves condition, and the difference between heat release rate and reaction rate distributions in Mach number space is also observed. The oscillation characteristics in the strut-based scramjet is discussed mode by mode using the Proper Orthogonal Decomposition approach, and the results identify a mode at 4.997 kHz, in which the thermal-acoustic coupling found, while the stronger modes are the results of multiple factors, including auto-ignition, vortexes shedding and the resulting shock-waves oscillation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据