4.6 Article

Biosynthesis of Fatty Acid Derivatives by Recombinant Yarrowia lipolytica Containing MsexD2 and MsexD3 Desaturase Genes from Manduca sexta

期刊

JOURNAL OF FUNGI
卷 9, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/jof9010114

关键词

Yarrowia; pheromone; desaturase; Manduca; conjugase; metabolic engineering

向作者/读者索取更多资源

Research has found that sex pheromone mixtures of certain insect species can produce unique C16 long conjugated fatty acids with two or three conjugated double bonds. The supplementation of fatty acid methyl esters into the medium resulted in the identification of 20 new fatty acids with two or three double bonds. The study proves that Y. lipolytica is capable of synthesizing C16-conjugated fatty acids, and further optimization could lead to increased production of novel fatty acid derivatives with biotechnologically interesting properties.
One of the most interesting groups of fatty acid derivates is the group of conjugated fatty acids from which the most researched include: conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA), which are associated with countless health benefits. Sex pheromone mixtures of some insect species, including tobacco horn-worm (Manduca sexta), are typical for the production of uncommon C16 long conjugated fatty acids with two and three conjugated double bonds, as opposed to C18 long CLA and CLNA. In this study, M. sexta desaturases MsexD2 and MsexD3 were expressed in multiple strains of Y. lipolytica with different genotypes. Experiments with the supplementation of fatty acid methyl esters into the medium resulted in the production of novel fatty acids. Using GCxGC-MS, 20 new fatty acids with two or three double bonds were identified. Fatty acids with conjugated or isolated double bonds, or a combination of both, were produced in trace amounts. The results of this study prove that Y. lipolytica is capable of synthesizing C16-conjugated fatty acids. Further genetic optimization of the Y. lipolytica genome and optimization of the fermentation process could lead to increased production of novel fatty acid derivatives with biotechnologically interesting properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据