4.7 Article

Constructing coarse-grained skyrmion potentials from experimental data with Iterative Boltzmann Inversion

期刊

COMMUNICATIONS PHYSICS
卷 6, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42005-023-01145-9

关键词

-

向作者/读者索取更多资源

Efforts to understand skyrmion behaviour often overlook the interaction potentials but these are key to improve predictive modelling. Here, the authors use an Iterative Boltzmann Inversion technique to construct potentials for skyrmion-skyrmion and skyrmion-boundary interactions from a single experimental measurement, finding the two interactions are exponentially repulsive.
Efforts to understand skyrmion behaviour often overlook the interaction potentials but these are key to improve predictive modelling. Here, the authors use an Iterative Boltzmann Inversion technique to construct potentials for skyrmion-skyrmion and skyrmion-boundary interactions from a single experimental measurement, finding the two interactions are exponentially repulsive. In an effort to understand skyrmion behavior on a coarse-grained level, skyrmions are often described as 2D quasiparticles evolving according to the Thiele equation. Interaction potentials are the key missing parameters for predictive modeling of experiments. Here, the Iterative Boltzmann Inversion technique commonly used in soft matter simulations is applied to construct potentials for skyrmion-skyrmion and skyrmion-magnetic material boundary interactions from a single experimental measurement without any prior assumptions of the potential form. It is found that the two interactions are purely repulsive and can be described by an exponential function for micrometer-sized skyrmions in a ferromagnetic thin film multilayer stack. This captures the physics on experimental length and time scales that are of interest for most skyrmion applications and typically inaccessible to atomistic or micromagnetic simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据