4.5 Article

First approach to assess the effects of nanoplastics on the soil species Folsomia candida: A mixture design with bisphenol A and diphenhydramine

期刊

NANOIMPACT
卷 29, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.impact.2023.100450

关键词

Collembola; Nanopolystyrene; Organic compounds; Combined exposures; Adverse impacts

向作者/读者索取更多资源

The main aim of this study is to understand the effects of nanoplastics on the terrestrial invertebrate Folsomia candida. The research shows that the presence of nanoplastics can alter the toxicity of industrial chemicals and pharmaceuticals to the organism. However, the effects vary depending on the concentration and conditions.
The terrestrial environment is one of the main recipients of plastic waste. However, limited research has been performed on soil contamination by plastics and even less assessing the effects of nanoplastics (NPls). Behind the potential toxicity caused per se, NPls are recognized vectors of other environmental harmful contaminants. Therefore, the main aim of the present study is to understand whether the toxicity of an industrial chemical (bisphenol A - BPA) and a pharmaceutical (diphenhydramine - DPH) changes in the presence of polystyrene NPls to the terrestrial invertebrate Folsomia candida. Assessed endpoints encompassed organismal (reproduction, survival and behavior) and biochemical (neurotransmission and oxidative stress) levels. BPA or DPH, 28 d single exposures (1 to 2000 mg/kg), induce no effect on organisms' survival. In terms of reproduction, the calculated EC50 (concentration that causes 50% of the effect) and determined LOEC (lowest observed effect concentration) were higher than the environmental concentrations, showing that BPA or DPH single exposure may pose no threat to the terrestrial invertebrates. Survival and reproduction effects of BPA or DPH were independent on the presence of NPls. However, for avoidance behavior (48 h exposure), the effects of the tested mixtures (BPA + NPls and DPH + NPls) were dependent on the NPls concentration (at 0.015 mg/kg - interaction: no avoidance; at 600 mg/kg - no interaction: avoidance). Glutathione S-transferase activity increased after 28 d exposure to 100 mg/kg DPH + 0.015 mg/kg NPls (synergism). The increase of lipid peroxidation levels found after the exposure to 0.015 mg/kg NPls (a predicted environmental concentration) was not detected in the mixtures (antagonism). The results showed that the effects of the binary mixtures were dependent on the assessed endpoint and the tested concentrations. The findings of the present study show the ability of NPls to alter the effects of compounds with different natures and mechanisms of toxicity towards soil organisms, showing the importance of environ-mental risk assessment considering mixtures of contaminants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据