4.7 Article

Improved discharge energy density and efficiency of polypropylene- based dielectric nanocomposites utilizing BaTiO3@TiO2 nanoparticles

期刊

MATERIALS TODAY ENERGY
卷 30, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mtener.2022.101160

关键词

Dielectric capacitors; Polypropylene; Energy density; Core-shell

资金

  1. National Natural Science Foundation of China
  2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
  3. [52172265]
  4. [52002404]

向作者/读者索取更多资源

By introducing core-shell structure nanoparticles into the polypropylene matrix, the discharge energy density of polypropylene film capacitors has been improved, with a high efficiency maintained.
With increased requirements from the miniaturization, lightweight and integration of electronic devices, it is urgent to improve the discharge energy density (Ue) of commercial polypropylene (PP) film capacitor. In this work, core-shell structure BaTiO3@TiO2 nanoparticles were introduced into polypropylene matrix via melt mixing method. Due to the existence of the transition layer, the addition of BaTiO3@TiO2 nanoparticles can increase the interfacial polarization of the composites without causing obvious local electric field concentration in comparison with bare BaTiO3 nanoparticles. Moreover, BaTiO3@TiO2 nanoparticles can act as an electron trap to inhibit the movement of carriers and hinder the growth of the electrical tree, thereby promoting the breakdown strength (Eb) of PP-based nanocomposites. As a result, the Ue of the nanocomposite with 6 wt% BaTiO3@TiO2 nanoparticles was improved from 4.28 J/cm3 of pure PP to 5.58 J/cm3, maintaining a high efficiency of more than 95%. This study provides an effective strategy to optimize energy storage density of PP film capacitors.(c) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据