4.6 Article

Probing magnetic orbitals and Berry curvature with circular dichroism in resonant inelastic X-ray scattering

期刊

NPJ QUANTUM MATERIALS
卷 8, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41535-023-00538-x

关键词

-

向作者/读者索取更多资源

Resonant inelastic X-ray scattering (RIXS) can be used to probe localized excitations at selected atoms in materials, and can provide information about fundamental properties such as orbital angular momentum and Berry curvature. In this study, the authors demonstrate how information about OAM textures can be extracted from the circular dichroism in RIXS. Their simulations and calculations suggest the possibility of observing the predicted circular dichroism in forthcoming experiments, opening up a new avenue for studying topological states in quantum materials.
Resonant inelastic X-ray scattering (RIXS) can probe localized excitations at selected atoms in materials, including particle-hole transitions between the valence and conduction bands. These transitions are governed by fundamental properties of the corresponding Bloch wave functions, including orbital and magnetic degrees of freedom, and quantum geometric properties such as the Berry curvature. In particular, orbital angular momentum (OAM), which is closely linked to the Berry curvature, can exhibit a nontrivial momentum dependence. We demonstrate how information on such OAM textures can be extracted from the circular dichroism in RIXS. Based on accurate modeling with a first-principles treatment of the key ingredient-the light-matter interaction-we simulate dichroic RIXS spectra for the prototypical transition-metal dichalcogenide MoSe2 and the twodimensional topological insulator 1T'-MoS2. Guided by an intuitive picture of the optical selection rules, we discuss how the momentum-dependent OAM manifests itself in the dichroic RIXS signal if one controls the momentum transfer. Our calculations are performed for typical experimental geometries and parameter regimes, and demonstrate the possibility of observing the predicted circular dichroism in forthcoming experiments. Thus, our work establishes a new avenue for observing Berry curvature and topological states in quantum materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据