4.8 Article

Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film

期刊

NATURE SUSTAINABILITY
卷 6, 期 2, 页码 180-191

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41893-022-01003-6

关键词

-

向作者/读者索取更多资源

Flexible thermoelectric materials with high performance and flexibility show potential for converting waste heat into useful electricity. The textured structure design of Bi2Te3 thin films provides high thermoelectric performance and withstands 2,000 bending tests, demonstrating excellent flexibility. A flexible device assembled from 40 pairs of thin films exhibits outstanding output power density under temperature gradient, indicating its potential application in harvesting thermal energy from the environment or human bodies.
Thermoelectric materials offer the possibility of harvesting huge amounts of waste heat, such as vehicle exhaust gases, and converting them directly into useful electricity, a process that generates power more sustainably. Flexible thermoelectrics have emerged as a technology to power wearable electronics and sensors, although coupling of thermoelectric performance and flexibility remains a big challenge. Here, we show a Bi2Te3 thin-film design that features high thermoelectric performance (room-temperature figure of merit ZT of similar to 1.2) and high flexibility (surviving 2,000 bending tests at an 8 mm bending radius). The favourable combination of high performance and flexibility is rooted in the textured structure of the film on the (00l) plane. The assembled flexible device from 40 pairs of thin films exhibits an outstanding output power density of 2.1mW cm(-2) at a temperature gradient of 64 K, demonstrating potential application in harvesting thermal energy from the environment or human bodies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据