4.8 Article

Manipulating Deposition Behavior by Polymer Hydrogel Electrolyte Enables Dendrite-Free Zinc Anode for Zinc-Ion Hybrid Capacitors

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

Ion Sieve: Tailoring Zn2+ Desolvation Kinetics and Flux toward Dendrite-Free Metallic Zinc Anodes

Shangqing Jiao et al.

Summary: This study presents an ion sieve coating that effectively inhibits dendrite growth on metallic zinc anodes, improving the rechargeability of aqueous zinc metal batteries. Experimental and theoretical analyses demonstrate that the coating facilitates the desolvation of zinc clusters, weakens hydrogen evolution reaction, and homogenizes ion flux, resulting in dendrite-free zinc deposition. The symmetric cell with the ion sieve coating shows a lifespan of up to 3000 hours, highlighting the enhanced performance of zinc metal batteries.

ACS NANO (2022)

Article Chemistry, Multidisciplinary

Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries

Siwen Huang et al.

Summary: This study demonstrates a new approach for designing high-performance antifreezing flexible batteries by utilizing the Hofmeister effect and low-concentration salts to regulate the chemical properties of hydrogel electrolytes. The optimized hydrogel electrolyte exhibits excellent flexibility and high ionic conductivity, enabling the zinc-ion battery to achieve good cycling performances even at low temperatures.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry

Guojin Liang et al.

Summary: The article introduces a method to solve the irreversibility issue of zinc metal anodes through a solution-dipping approach that constructs a protective coating. The synergistic combination of electric conductive coatings, insulating coatings, and 3D structural frameworks enables highly reversible zinc metal anode chemistry with suppressed gas production and dendrite growth.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Manipulating the Zinc Deposition Behavior in Hexagonal Patterns at the Preferential Zn (100) Crystal Plane to Construct Surficial Dendrite-Free Zinc Metal Anode

Yaru Zhang et al.

Summary: The research demonstrates that by designing specific surface structures and crystal planes, the dendrite issue of zinc metal during cycling can be effectively solved, improving the electrochemical performance and achieving long cycling lifespan.
Article Chemistry, Multidisciplinary

Regulating Interfacial Desolvation and Deposition Kinetics Enables Durable Zn Anodes with Ultrahigh Utilization of 80%

Hongrun Jin et al.

Summary: This study introduces an aluminum-doped zinc oxide (AZO) interphase to improve the cycling stability and utilization of zinc anodes in aqueous zinc ion batteries (ZIBs), showing promising durability and stability in the AZO-coated zinc (AZO@Zn) anode. The V2O5/AZO@Zn full cell exhibits high capacity retention at high rates.
Article Chemistry, Multidisciplinary

Regulating Interfacial Ion Migration via Wool Keratin Mediated Biogel Electrolyte toward Robust Flexible Zn-Ion Batteries

Yanyan Shao et al.

Summary: This study proposes a hybrid biogel electrolyte that can regulate the interfacial electrochemical performance in aqueous Zn-ion batteries (ZIBs) and solve issues such as zinc dendrite growth and side reactions. By introducing keratin, the electrolyte exhibits improved Zn2+ transference number and superior Zn utilization. Additionally, the hybrid biogel electrolyte can suppress cathode side reactions and enhance interfacial adhesion in flexible batteries.
Article Chemistry, Physical

A highly sensitive and ultra-stretchable zwitterionic liquid hydrogel-based sensor as anti-freezing ionic skin

Yabin Zhang et al.

Summary: The article presents a novel zwitterionic liquid polymer hydrogel with extraordinary mechanical versatility, high transparency, and conductivity, as well as anti-freezing ability, for multifunctional sensor applications. The hydrogel demonstrates excellent conductivity and low-temperature tolerance due to the conductive zwitterionic nanochannels formed by the zwitterionic liquid and methacrylate lysine. Additionally, the hydrogel exhibits high transparency, remarkable stretchability, self-healing properties, adhesiveness to diverse substrates, and high conductivity even at low temperatures, making it a promising candidate for strain sensors and ionic skin in wearable electronic devices.

JOURNAL OF MATERIALS CHEMISTRY A (2022)

Article Chemistry, Multidisciplinary

Gel Electrolyte Constructing Zn (002) Deposition Crystal Plane Toward Highly Stable Zn Anode

Yu Hao et al.

Summary: The gel electrolyte with multifunctional charged groups can effectively address the dendrite formation issue and consecutive side reactions in aqueous Zn batteries. The charged groups can texture the Zn2+ nucleation and deposition plane, inducing uniform growth of Zn metal and eliminating side reactions for high rate performance. This design of gel electrolyte shows promise for safe, flexible, and wearable energy storage devices.

ADVANCED SCIENCE (2022)

Article Multidisciplinary Sciences

Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode

Bingyao Zhang et al.

Summary: This study effectively addresses the issues of dendrite growth and side reactions in zinc-ion batteries by using a highly-confined tannic acid modified sodium alginate composite gel electrolyte. The modified electrolyte guides and regulates zinc deposition, resulting in steady zinc plating/stripping behavior and high cycle stability.

SCIENCE BULLETIN (2022)

Article Chemistry, Physical

Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries

Weijun Zhou et al.

Summary: This study utilizes a cotton-derived cellulose film as a separator for AZIBs, which effectively inhibits zinc dendritic growth and harmful side reactions due to its excellent mechanical properties and ionic conductivity. Batteries with this separator show stability and high capacity, as well as improved rate capability and cyclability.

ENERGY STORAGE MATERIALS (2022)

Article Green & Sustainable Science & Technology

A non-flammable hydrous organic electrolyte for sustainable zinc batteries

Daliang Han et al.

Summary: Aqueous zinc batteries are safer than lithium-ion batteries, but their anodes are susceptible to dendrite failure and side reactions. The authors demonstrate a low-cost electrolyte that involves hydrate salt and organic solvent, proving to be non-flammable. The zinc battery cell delivers excellent performance even at low temperatures of -30 degrees Celsius.

NATURE SUSTAINABILITY (2022)

Article Chemistry, Multidisciplinary

A Functional Organic Zinc-Chelate Formation with Nanoscaled Granular Structure Enabling Long-Term and Dendrite-Free Zn Anodes

Huaming Yu et al.

Summary: A highly antiwater interface layer is designed on Zn metal to address the corrosion and dendrite growth problems in aqueous Zn metal batteries. The experimental results show that this interface layer can prevent water damage to the Zn anode surface and facilitate fast zinc-ion adsorption and migration. The modified anode exhibits long cycling lifespan and low polarization voltage, demonstrating its potential for high-performance aqueous zinc-metal batteries.

ACS NANO (2022)

Article Chemistry, Multidisciplinary

Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes

Licheng Miao et al.

Summary: The introduction of a hydrophobic carbonate cosolvent in rechargeable aqueous zinc batteries can address the irreversible issues of Zn metal anodes by breaking the water's H-bond network, replacing solvating H2O, and creating a dendrite-free Zn2+-plating behavior. This efficient strategy with a hydrophobic cosolvent offers a promising direction for designing aqueous battery chemistries.

ACS NANO (2022)

Article Chemistry, Multidisciplinary

Synergistic Solvation and Interface Regulations of Eco-Friendly Silk Peptide Additive Enabling Stable Aqueous Zinc-Ion Batteries

Baojun Wang et al.

Summary: This study demonstrates a low-cost aqueous electrolyte for zinc ion batteries with the addition of silk peptide. The silk peptide suppresses side reactions, regulates the solvation structure of zinc ions, and enhances the stability of the electrode surface, resulting in improved cycle life and Coulombic efficiency of the battery.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Polymeric Molecular Design Towards Horizontal Zn Electrodeposits at Constrained 2D Zn2+ Diffusion: Dendrite-Free Zn Anode for Long-Life and High-Rate Aqueous Zinc Metal Battery

Dan Xie et al.

Summary: This research proposes a design strategy to electrodeposit a thin polyanthraquinone layer on the surface of zinc to achieve dendrite-free zinc metal anodes. The results show that the polyanthraquinone layer can effectively suppress dendrite growth, hydrogen evolution reaction, and zinc corrosion, improving the cycling lifespan and rate capability of zinc metal batteries.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer

Jin-Lin Yang et al.

Summary: A polyanionic hydrogel film is introduced as a protective layer on the Zn anode. It balances the transport of zinc ions and effectively suppresses hydrogen evolution and dendrite formation, enabling stable and reversible Zn stripping/plating.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Dendrite Issues for Zinc Anodes in a Flexible Cell Configuration for Zinc-Based Wearable Energy-Storage Devices

Qing Li et al.

Summary: This study investigates the zinc accumulation issue on the folded and curved areas of flexible anodes and proposes a correlation between the bending radius and cell lifespan. The interface contact of hydrogel electrolytes is identified as a key factor affecting the cell lifespan when working in a bending mode. By conducting detailed analysis, it is found that water in salt (WIS) hydrogel with suitable chemistry, satisfactory mechanical properties, and high adhesivity demonstrates highly stable cell performance. This work provides a new perspective in zinc anode research for the development of flexible and wearable energy storage devices.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Physical

Stress-Release Functional Liquid Metal-MXene Layers toward Dendrite-Free Zinc Metal Anodes

Jianan Gu et al.

Summary: A special liquid metal electrode was designed and fabricated to solve the uncontrollable dendrite issue in zinc anodes, and a flexible zinc-based anode was successfully prepared with high performance and long lifespan, which is of great significance for the development of next-generation zinc-based batteries.

ADVANCED ENERGY MATERIALS (2022)

Article Multidisciplinary Sciences

Integrated 'all-in-one' strategy to stabilize zinc anodes for high-performance zinc-ion batteries

Canpeng Li et al.

Summary: An 'all-in-one' (AIO) electrode was developed by combining structural design, interface modification, and electrolyte optimization, which can effectively improve the stability and performance of zinc-ion batteries.

NATIONAL SCIENCE REVIEW (2022)

Article Chemistry, Physical

Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery

Yun Zhong et al.

Summary: In this study, a monosodium glutamate (MSG) electrolyte additive is introduced to reconstruct the Zn anode/electrolyte interface and suppress Zn dendrite growth and H-2 evolution. The adsorbed glutamate anions can selectively inhibit side reactions and promote [Zn(H2O)(6)](2+) desolvation, leading to uniform and stable Zn deposition.

NANO ENERGY (2022)

Article Chemistry, Physical

Achieving ultra-long lifespan Zn metal anodes by manipulating desolvation effect and Zn deposition orientation in a multiple cross-linked hydrogel electrolyte

Pengxiang Lin et al.

Summary: A novel polyacrylamide-poly (ethylene glycol) diacrylate-carboxymethyl cellulose (PMC) hydrogel electrolyte is designed to overcome the obstacles of high desolvation energy barrier and inhomogeneous Zn2+ flux in aqueous zinc-ion batteries (ZIBs). The PMC hydrogel electrolyte reduces the desolvation energy barrier and guides the preferential orientation of Zn deposition, leading to improved performance and an ultra-long cycle life of 5000 hours with a high coulombic efficiency of 99.5%.

ENERGY STORAGE MATERIALS (2022)

Article Chemistry, Physical

Electrolyte additive engineering for aqueous Zn ion batteries

Yifei Geng et al.

Summary: Aqueous Zn ion batteries (AZIBs) are a promising electrochemical energy storage device. Additive engineering is an innovative and flexible technology that effectively solves the challenges faced by AZIBs cathode and anode. This review summarizes the effects of additive engineering on cathode and anode, as well as the influence on charge storage mechanism and kinetic characteristics of AZIBs.

ENERGY STORAGE MATERIALS (2022)

Article Chemistry, Physical

Modulation of hydrogel electrolyte enabling stable zinc metal anode

Chunyan Fu et al.

Summary: This study systematically investigates hydrogel electrolytes for zinc metal anodes (ZMAs) by regulating their crosslinking and grafting structures. The results highlight the importance of network structure and polymeric anions in the hydrogel. The PSX gel, crosslinked by carboxyl-grafted polyvinyl alcohol and xanthan gum, demonstrates superior performance with high ionic conductivity and a considerable Zn2+ transference number. Zn//Zn cells with PSX electrolytes show uniform zinc deposition, minimal by-products, and suppressed hydrogen evolution. The PSX electrolyte also exhibits good compatibility and excellent performance when paired with V2O5 or active carbon cathodes. Flexible pouch cells withstand different deformation and stress conditions.

ENERGY STORAGE MATERIALS (2022)

Article Chemistry, Multidisciplinary

Navigating fast and uniform zinc deposition via a versatile metal-organic complex interphase

Huanyan Liu et al.

Summary: This research proposes a novel metal-organic complex interphase strategy to address the corrosion and dendrite issues in aqueous Zn metal batteries. By forming complex interphases between metal Zn and phytic acid, the deposition of Zn is made more uniform and the Coulombic efficiency is significantly improved, leading to enhanced stability and cycling lifetime of Zn metal batteries.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes

Huili Peng et al.

Summary: By intercalating n-butylamine into monodisperse hexagonal nanoplates of alpha-ZrP, the compatibility with hydrophobic polymers is improved, resulting in a dense and robust artificial layer on the zinc anode. This reduces direct exposure to electrolytes and suppresses side reactions, leading to improved electrochemical performance.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Physical

Adsorption of Pb(II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads

Xinyi Xu et al.

Summary: Chitosan modification is a vital method for developing adsorbents, and in this research, carboxylated chitosan and carboxylated nanocellulose were used to prepare an efficient Pb(II) adsorbent with excellent adsorption capacity. The adsorption mechanism was identified as monolayer chemisorption.

JOURNAL OF MOLECULAR LIQUIDS (2021)

Article Chemistry, Multidisciplinary

Engineering Self-Adhesive Polyzwitterionic Hydrogel Electrolytes for Flexible Zinc-Ion Hybrid Capacitors with Superior Low-Temperature Adaptability

Qingjin Fu et al.

Summary: The flexible zinc-ion hybrid capacitors exhibit excellent low-temperature adaptability and high thermal conductivity, along with a long cycling lifespan, outperforming similar products.

ACS NANO (2021)

Article Chemistry, Multidisciplinary

High-Performance Aqueous Na-Zn Hybrid Ion Battery Boosted by Water-In-Gel Electrolyte

Wending Pan et al.

Summary: The study introduces a novel water-in-gel electrolyte based CuHCF-CNT/Zn Na-Zn hybrid battery, which achieves high discharge voltage and large capacity, delivering superior energy density and cycling stability. When further coupled with the Zn-O-2 reaction, an ultrahigh discharge capacity can be achieved.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO2 Batteries

Minfeng Chen et al.

Summary: A all-round hydrogel electrolyte was developed using cotton, tetraethyl orthosilicate, and glycerol, exhibiting high ionic conductivity and excellent mechanical properties.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long-Lifespan and Dendrite-Free Zn Metal Anodes

Yang Yang et al.

Summary: The study successfully developed a Zn@ZnF2 electrode with a multi-functional protective layer by designing a 3D interconnected ZnF2 matrix on the surface of Zn foil. This electrode exhibits stable zinc deposition kinetics and good plating/stripping reversibility, showing potential for practical application in various battery systems.

ADVANCED MATERIALS (2021)

Article Engineering, Environmental

Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors

Fu-Zhi Cui et al.

Summary: Aqueous zinc-ion hybrid capacitors (ZIHCs) are promising for grid-scale energy storage due to their low cost, intrinsic non-flammability, environmental friendliness, and high power densities. However, the uncontrollable zinc dendrite growth and large volume change of zinc metal anode during the stripping/plating process hinder their practical application. Developing alternative anode materials with favorable electrochemical performances is highly desirable in order to address these challenges.

CHEMICAL ENGINEERING JOURNAL (2021)

Review Chemistry, Physical

Recent Developments and Future Prospects for Zinc-Ion Hybrid Capacitors: a Review

Heng Tang et al.

Summary: This critical review comprehensively summarizes the fundamentals and recent advances of zinc-ion hybrid capacitors (ZICs), including their compositions, energy storage mechanisms, advantages and disadvantages, as well as future research directions. It is expected to provide guidance for the design and exploitation of high-performance ZICs for potential practical applications.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Physical

Electrolyte Strategies toward Better Zinc-Ion Batteries

Cunxin Liu et al.

Summary: With the increasing demand for large-scale energy storage, high safety and low cost rechargeable zinc-ion batteries are considered as potential substitutes for lithium-ion batteries. However, fundamental issues hinder the development of zinc-based energy storage systems. The electrolyte plays a crucial role in ensuring the compatibility and cycling of battery components, and strategies to address issues such as cathode dissolution, zinc dendrites, corrosion, and hydrogen evolution are discussed.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

Toward Planar and Dendrite-Free Zn Electrodepositions by Regulating Sn-Crystal Textured Surface

Shiying Li et al.

Summary: The research investigates the influence of surface structure on the nucleation and deposition of Zn by reconstructing the surface structure of a Zn-metal anode with Sn crystal textures. The high-affinity Zn binding sites of Sn and the high surface energy ensure better wettability from the deposits and promote the lateral growth of Zn crystals, leading to improved stability and cycling performance of the Zn-metal anode.

ADVANCED MATERIALS (2021)

Review Chemistry, Multidisciplinary

Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties

Xuanhe Zhao et al.

Summary: Hydrogels possess extreme mechanical properties and have diverse applications. While many hydrogels have been developed, a set of general principles for designing them for various applications remains a central need.

CHEMICAL REVIEWS (2021)

Article Chemistry, Multidisciplinary

Amino Acid-Induced Interface Charge Engineering Enables Highly Reversible Zn Anode

Haotian Lu et al.

Summary: This research presents a new strategy of zinc-electrolyte interface charge engineering induced by amino acid additives, leading to highly reversible zinc plating/stripping with improved stability and uniformity of the zinc metal anode. Long-term stable cycling at high and ultra-high current densities has been demonstrated, highlighting the reliable self-adaptive feature of the zinc-electrolyte interface.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Engineering, Environmental

Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors

Gaobo Lou et al.

Summary: A N, O co-doped two-dimensional carbon nanosheet material is successfully fabricated via one-step combustion conversion of wood for excellent cathode material in zinc ion hybrid supercapacitors. The resulting material shows a uniform structure, high specific surface area, and outstanding electrochemical performance, leading to superior specific capacity, high rate capability, and attractive energy density in ZHS.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Multidisciplinary Sciences

Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network

Wei Zhang et al.

Summary: The stretchable ionic elastomer demonstrated in the study exhibits high stretchability, immense strain-stiffening, good self-healing ability, excellent elasticity, high transparency, anti-freezing properties, water reprocessibility, and easy-to-peel adhesion, making it very promising for use in wearable electronic sensors for human-machine interfacing.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Physical

Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase

Shengli Di et al.

Summary: By pre-cycling Zn electrodes in an organic electrolyte, a stable organic-inorganic hybrid SEI layer can be formed on the Zn electrode, effectively reducing dendrite growth and water-induced side reactions in aqueous batteries, and improving the stability and lifespan of Zn electrodes.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer†

Xiaotan Zhang et al.

Summary: The CNG membrane, serving as a desolvation layer, effectively prevents water molecules from contacting the zinc anode, thereby delaying water-induced corrosion reactions and promoting redirected zinc deposition through deanionization shock. The flexible and toughened nature of the CNG membrane allows it to withstand strong forces and accommodate surface fluctuations of the zinc anode during plating/stripping processes, resulting in enhanced Coulombic efficiency and extended cycle life.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries

Longtao Ma et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

A Safe Polyzwitterionic Hydrogel Electrolyte for Long-Life Quasi-Solid State Zinc Metal Batteries

Kaitong Leng et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Engineering, Environmental

Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material

Yiwei Zheng et al.

CHEMICAL ENGINEERING JOURNAL (2020)

Article Chemistry, Applied

Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor

Yanhong Feng et al.

JOURNAL OF ENERGY CHEMISTRY (2020)

Review Chemistry, Multidisciplinary

Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability

Youhong Guo et al.

CHEMICAL REVIEWS (2020)

Article Nanoscience & Nanotechnology

Stable Hydrogel Electrolytes for Flexible and Submarine-Use Zn-Ion Batteries

Baojun Wang et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Chemistry, Physical

Electrochemical Zinc Ion Capacitors Enhanced by Redox Reactions of Porous Carbon Cathodes

Jian Yin et al.

ADVANCED ENERGY MATERIALS (2020)

Article Chemistry, Physical

Progress on zinc ion hybrid supercapacitors: Insights and challenges

Zhiwei Li et al.

ENERGY STORAGE MATERIALS (2020)

Review Chemistry, Multidisciplinary

Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review

Tengsheng Zhang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Review Materials Science, Multidisciplinary

Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries

Canpeng Li et al.

ENERGY & ENVIRONMENTAL MATERIALS (2020)

Article Chemistry, Physical

Fish-inspired anti-icing hydrogel sensors with low-temperature adhesion and toughness

Jiajun Xu et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Multidisciplinary

Direct Structure-Performance Comparison of All-Carbon Potassium and Sodium Ion Capacitors

Ziqiang Xu et al.

ADVANCED SCIENCE (2019)

Article Chemistry, Multidisciplinary

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase

Zhiming Zhao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Multidisciplinary

An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte

Hongfei Li et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Physical

A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications

Heng Wang et al.

ENERGY STORAGE MATERIALS (2018)

Article Biochemistry & Molecular Biology

Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO)

Gutha Yuvaraja et al.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2017)