4.8 Article

Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-State Li batteries

期刊

ENERGY STORAGE MATERIALS
卷 55, 期 -, 页码 193-204

出版社

ELSEVIER
DOI: 10.1016/j.ensm.2022.11.038

关键词

All -solid-state lithium batteries; Halide solid electrolytes; Sulfide solid electrolytes; Digital twins; Electrochemical stabilities

向作者/读者索取更多资源

A novel halide-sulfide hybrid catholyte design is reported for Ni-rich layered oxide cathodes in all-solid-state Li batteries. The hybrid catholyte consists of Li3YCl6 coatings for protection and Li6PS5Cl as a Li+conductor, which significantly improves the performance of the Li[Ni0.88Co0.11Al0.01]O2 cathodes.
Halide solid electrolytes are a promising candidate for all-solid-state Li batteries (ASLBs) owing to their mechanical sintering ability and excellent (electro)chemical oxidation stability. However, these advantages are counteracted by the lower Li+ conductivities and higher specific densities compared with those of sulfides. Herein, a novel halide-sulfide hybrid catholyte design for Ni-rich layered oxide cathodes for ASLBs is reported. In a hybrid catholyte, Li3YCl6 (0.40 mS cm- 1) coatings protect the surface of Li[Ni0.88Co0.11Al0.01]O2 while Li6PS5Cl (1.80 mS cm- 1) serves as a Li+highway. Li[Ni0.88Co0.11Al0.01]O2 cathodes with an optimal fraction of Li3YCl6, 10 wt% with respect to Li [Ni0.88Co0.11Al0.01]O2, substantially outperform electrodes using either Li6PS5Cl or Li3YCl6 in terms of capacity (202 vs. 171 or 191 mA h g-1 at 0.1C, respectively), initial Coulombic efficiency, rate capability, and cycling performance. The superiority of Li3YCl6 for interfacial stability in the Li3YCl6-coated electrode to the electrode without Li3YCl6 is confirmed by complementary analysis. Moreover, the digital twin model is successfully established and reveals electrically isolated Li[Ni0.88Co0.11Al0.01]O2 particles when 14 wt% Li3YCl6 is used. This insight leads to the development of a mixed conductor coating consisting of Li3YCl6 and carbon, further enhancing the performance: e.g., 134 vs. 53 mA h g- 1 at 2C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据