4.7 Article

Speleothems and Biomineralization Processes in Hot Spring Environment: The Case of Aedipsos (Edipsos), Euboea (Evia) Island, Greece

期刊

出版社

MDPI
DOI: 10.3390/jmse10121909

关键词

stalactite; speleothem; biomineralization; facies; mineralogy; hot spring; Cyanobacteria

资金

  1. Hellenic Survey of Geology and Mineral Exploration, HSGME

向作者/读者索取更多资源

This study investigates a small open cave with hot springs and stalactites in Greece using an interdisciplinary approach. The research reveals that the main mineral phase in the cave is calcite, and it interacts with Cyanobacteria species to form speleothem deposits. The findings are significant for understanding biomineralization processes in these unique environments.
Caves with hot springs and speleothem deposits are infrequent environments of high scientific interest due to their unique environmental conditions. The selected site is a small open cave with a hot spring and stalactites in the Aedipsos area (NW Euboea Island, Greece), which was studied through an interdisciplinary approach. The mineralogical composition of the speleothems was determined by optical microscopy, XRD, and SEM-EDS microanalysis, and identification of the Cyanobacteria species was made based on morphological characteristics. The main mineral phase in the studied samples is calcite, with several trace elements (i.e., up to 0.48 wt.% Na2O, up to 0.73 wt.% MgO, up to 4.19 wt.% SO3, up to 0.16 wt.% SrO and up to 2.21 wt.% Yb2O3) in the mineral-chemistry composition. The dominant facies are lamination and shrubs, which are the most common among the facies of the thermogenic travertines of the area. Based on the studied stalactites, twenty-nine different Cyanobacteria species were identified, belonging to the following orders: Synechococcales (28%), Oscillatoriales (27%), Chroococcales (21%) and Nostocales (21%), and Spirulinales (3%). Among them, thermophilic species (Spirulina subtilissima) and limestone substrate species (Chroococcus lithophilus, Leptolyngbya perforans, and Leptolyngbya ercegovicii) were identified. The identified Cyanobacteria were found to participate in biomineralization processes. The most characteristic biomineralization activity is made by the endolithic Cyanobacteria destroying calcite crystals in the outer layer. In a few cases, calcified cyanobacterial sheaths were detected. The presence of filamentous Cyanobacteria, along with extracellular polymeric substance (EPS), creates a dense net resulting in the retention of calcium carbonate crystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据