4.7 Article

Effects of Iron Valence on the Growth, Photosynthesis, and Fatty Acid Composition of Phaeodactylum tricornutum

期刊

出版社

MDPI
DOI: 10.3390/jmse11020316

关键词

Phaeodactylum tricornutum; iron valence; cell growth; photosynthetic activities; fatty acid composition

向作者/读者索取更多资源

Iron is a key factor in controlling the biomass of ocean phytoplankton and the lipid production of microalgae. Understanding the effects of different iron valences on microalgae is important for their commercial production.
Iron is a limiting factor that controls the phytoplankton biomass of the ocean and plays an important role in the lipid production of microalgae. Elucidating the effects of different iron valences on microalgae is helpful for their commercial production. We investigated the growth, photosynthesis, and fatty acid profile of the model diatom Phaeodactylum tricornutum cultured with depleted Fe, Fe2+, Fe2+/Fe3+, and Fe3+. Samples were taken every 24 h for 8 days, and their cell density, photosynthetic pigment content, chlorophyll fluorescence, total fatty acid content, and fatty acid composition were analyzed. The cell densities of the Fe2+ and Fe2+/Fe3+ groups were significantly higher than those of the control and Fe3+ groups (p < 0.05). They were 1.26 times and 1.23 times higher than those in the Fe-depleted group. The contents of chlorophyll a and c in the Fe2+ group were significantly higher than those in the Fe-depleted group (p < 0.05). The chlorophyll fluorescence results show that Fe2+ enhanced the photosynthesis of P. tricornutum to a greater extent than Fe3+. On the eighth day of harvest, Fv/Fm and Y(II) in the Fe2+ group were 0.672 and 0.476, respectively, being 1.10 and 1.19 times greater than those in the Fe3+ group and 1.15 and 1.33 times greater than those in the Fe-depleted group, respectively. Compared with the control group, the levels of saturated fatty acids of the Fe2+/Fe3+ and Fe3+ groups were significantly higher (p < 0.05) at 21.36 +/- 1.24% and 21.20 +/- 0.13%, respectively. The levels of polyunsaturated fatty acids of the Fe2+/Fe3+ group were significantly lower (p < 0.05) at 29.82 +/- 2.75%. Our results show that P. tricornutum exhibited physiological plasticity, including changes in photosynthetic activities and shifts in fatty acid composition, in response to different iron valences and that Fe2+ was more beneficial to the biomass production of this species than Fe3+. These findings are applicable to the production of biomass and polyunsaturated fatty acids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据