4.7 Article

A Framework for Optimal Sensor Placement to Support Structural Health Monitoring

期刊

出版社

MDPI
DOI: 10.3390/jmse10121819

关键词

structural health monitoring; optimisation; structural integrity; evolutionary algorithm; stress concentration

向作者/读者索取更多资源

This paper introduces a framework for optimizing sensor placement to support structural health monitoring systems. An illustrative example is used to demonstrate how to solve the inverse prediction problem using radial basis function approach, and the optimization is carried out using an evolutionary algorithm.
Offshore or drydock inspection performed by trained surveyors is required within the integrity management of an in-service marine structure to ensure safety and fitness for purpose. However, these physical inspection activities can lead to a considerable increase in lifecycle cost and significant downtime, and they can impose hazards for the surveyors. To this end, the use of a structural health monitoring (SHM) system could be an effective resolution. One of the key performance indicators of an SHM system is its ability to predict the structural response of unmonitored locations by using monitored data, i.e., an inverse prediction problem. This is highly relevant in practical engineering, since monitoring can only be performed at limited and discrete locations, and it is likely that structurally critical areas are inaccessible for the installation of sensors. An accurate inverse prediction can be achieved, ideally, via a dense sensor network such that more data can be provided. However, this is usually economically unfeasible due to budget limits. Hence, to improve the monitoring performance of an SHM system, an optimal sensor placement should be developed. This paper introduces a framework for optimising the sensor placement scheme to support SHM. The framework is demonstrated with an illustrative example to optimise the sensor placement of a cantilever steel plate. The inverse prediction problem is addressed by using a radial basis function approach, and the optimisation is carried out by means of an evolutionary algorithm. The results obtained from the demonstration support the proposal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据