4.6 Article

Bandgap characteristics of a piezoelectric phononic crystal Timoshenko nanobeam based on the modified couple stress and surface energy theories

期刊

MATERIALS TODAY COMMUNICATIONS
卷 33, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtcomm.2022.104782

关键词

Band structures; Phononic crystal; Surface piezoelectricity; Modified couple stress theory; Residual surface stress

向作者/读者索取更多资源

This paper establishes an analytical model to study the size-dependent flexural wave band structures in a piezoelectric phononic crystal nanobeam. By considering the effects of shear deformation and rotational inertia, the paper investigates the surface effects on the frequency bandgaps and studies the influence of various geometrical parameters on the band structures.
This paper establishes an analytical model for the size-dependent flexural wave band structures of a piezoelectric phononic crystal (PC) Timoshenko nanobeam, considering the shear deformation and rotational inertia effects. The governing equation is derived based on the surface piezoelectricity energy and modified couple stress theory in the bulk and surface layer of the piezoelectric PC nanobeam, respectively. As a main objective of this article, the surface effects including the surface elasticity, residual surface stress and surface piezoelectricity on the frequency bandgaps in the wave propagation band structures are investigated for a piezoelectric PC Timoshenko nanobeam. Also, the effects of some geometrical parameters on the band structures are studied in details. An analytical approach is proposed for the problem. The obtained results for a piezoelectric PC Timoshenko nanobeam are compared with those of previous researches for a piezoelectric PC Euler-Bernoulli nanobeam. It is concluded that the geometrical parameters and residual surface elasticity affect the location and width of bandgaps in the frequency band structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据