4.7 Article

Thermal manipulation modifies embryonic growth, hepatic free amino acid concentrations, and hatching performance in layer-type chicks

期刊

FRONTIERS IN VETERINARY SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fvets.2022.1049910

关键词

amino acid; thermal manipulation; embryo; layer-type; hatching

资金

  1. Jiangsu Agricultural Industry Technology System
  2. Jiangsu Agriculture Science and Technology Innovation Fund
  3. Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project
  4. North Jiangsu Science and Technology Project
  5. JAAS Fund for International Cooperation
  6. [[2022] 480]
  7. [CX(22)1008]
  8. [NJ2021-25]
  9. [XZ-SZ202119]

向作者/读者索取更多资源

The study found that thermal manipulation during incubation affects the development and amino acid metabolism of layer-type chicken embryos. Low temperature treatment causes a delay in development and affects the internal organs of chicks at hatch.
Thermal manipulation (TM) of incubation temperature has been demonstrated to alter metabolism and post-hatch thermotolerance in broiler strains (meat-type chickens). Fewer reports were focused on layer-type chickens and there was no report on amino acid metabolism during TM in layer-type embryos. In this study, we investigated the effects of TM on embryonic development, hepatic amino acid metabolism, and hatching performance in layer-type chickens. Fertilized eggs were incubated under control thermoneutral temperature (CT, 37.6 degrees C) and TM with high temperature (TMH, 39 degrees C, 8 h/day) or low temperature (TML, 20 degrees C, 1 h/day) from embryonic day (ED) 8 to ED 15. The embryonic weight and relative embryonic weight (yolk-free embryonic weight to the initial egg weight) significantly declined in the TML group at ED 13 (P < 0.01) and ED 16 (P < 0.0001), and were significantly increased (P < 0.001) in the TMH group at ED 16, in comparison with the embryos in the CT group. The concentrations of all hepatic free amino acids were significantly increased (P < 0.01) with embryonic development. Interestingly, TMH and TML caused similar effects on hepatic amino acid metabolism, in which most of the essential and non-essential amino acids were significantly declined (P < 0.05) under TM treatments at ED 13 but not affected at ED 16. Until hatching, TML, but not TMH, caused a significant (P < 0.05) delay (31-38 min/day from ED 8) in incubation duration. The hatchability in the TML group was lower than the other two groups, which indicated that 20 degrees C as cold stimulation was not suitable for layer embryos. The body weight, yolk weight, yolk-free body mass, and chick quality were not affected by TM treatments. However, the relative weight of the liver, but not the heart, was significantly reduced (P < 0.05) at hatching by TML treatment. In conclusion, TML, but not TMH, caused to delay in embryogenesis and affected the internal organ of chicks at hatch. Similar changes in amino acid metabolism under TMH and TML indicated that thermal stress induced by both high and low extreme ambient temperatures influences embryonic amino acid metabolism in a similar fashion in layer-type embryos.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据