4.6 Article

KNO3-Loaded Coffee Husk Ash as a Heterogeneous Alkali Catalyst for Waste Frying Oil Valorization into Biodiesel

期刊

ACS OMEGA
卷 7, 期 49, 页码 45129-45143

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c05572

关键词

-

资金

  1. Addis Ababa Science and Technology University

向作者/读者索取更多资源

In this study, a heterogeneous basic catalyst was synthesized and used for the transesterification of waste frying oil. The calcination temperature and KNO3 impregnation were found to have significant effects on the catalyst properties.
In this study, a heterogeneous basic catalyst was synthesized from a catalyst composite material (CCM) of coffee husk ash and char mixture (A/C) impregnated with KNO3 and employed to transesterify crude waste frying oil (WFO). The effect of CCM calcination temperature (CCMCT) (500-700 degrees C) on the catalyst physicochemical properties was investigated. A differential scanning calorimeter was used to examine potential phase changes during the calcination of A/C and CCM. The catalysts from each CCMCT were characterized by X-ray diffraction (XRD), Brunauer-Emmet-Teller surface area analyzer, scanning electron microscopy (SEM), SEM with energy-dispersive X-ray diffractometer, colorimeter, and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrometer. The methoxy functional group FTIR peak integral value and the dynamic viscosity of the biodiesel synthesized by each catalyst were used to determine the qualitative WFO conversion. Furthermore, the quantitative WFO conversion was determined using nuclear magnetic resonance (1H NMR) analysis. Crystallinity, elemental composition, basicity, and morphology of catalysts were highly dependent on the CCMCT. Without transesterification condition optimization (reaction temperature of 45 +/- 2.5 degrees C, catalyst loading of 3 wt %, methanol to oil molar ratio of 12:1, and reaction time of 1 h), a higher catalytic performance (72.04% WFO conversion) was reached using a catalyst from the CCMCT of 600 degrees C. When using a coffee husk ash catalyst without KNO3 impregnation (C-00-600), the WFO conversion was only 52.92%. When comparing the C-25-600 and C-00-600 catalysts, it was observed that KNO3 impregnation had a substantial impact on the catalyst crystallinity, basicity, and morphology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据