4.6 Article

Square-Facet Nanobar MOF-Derived Co3O4@Co/N-doped CNT Core-Shell-based Nanocomposites as Cathode Materials for High- Performance Supercapacitor Studies

期刊

ACS OMEGA
卷 8, 期 2, 页码 2183-2196

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c06369

关键词

-

向作者/读者索取更多资源

The binary and ternary nanocomposites of Co3O4@Co/N-CNTs with Ag NPs and rGO were successfully synthesized using a wet chemical route. Among different compositions tested, a ternary nanocomposite with a stoichiometric ratio of 7.0:1.5:1.5 of Co3O4@Co/N-CNTs, Ag NPs, and rGO exhibited the highest specific capacitance. The optimized nanocomposite showed excellent electrochemical stability and achieved an energy density of 74.1 W h.kg-1 and a power density of 443.7 W.kg-1.
The binary as well as ternary nanocomposites of the square-facet nanobar Co-MOF-derived Co3O4@Co/N-CNTs (N-CNTs: nitrogen-doped carbon nanotubes) with Ag NPs and rGO have been synthesized via an easy wet chemical route, and their supercapacitor behavior was then studied. At a controlled pH of the precursor solution, square-facet nanobars of Co-MOF were first synthesized by the solvothermal method and then pyrolyzed under a controlled nitrogen atmosphere to get a core-shell system of Co3O4@Co/N-CNTs. In the second step, different compositions of Co3O4@Co/N-CNT core-shell structures were formed by an ex-situ method with Ag NPs and rGO moieties. Among several bare, binary, and ternary compositions tested in 6 M aqueous KOH electrolyte, a ternary nanocomposite having a 7.0:1.5:1.5 stoichiometric ratio of Co3O4@Co/N-CNT, Ag NPs, and rGO, respectively, reported the highest specific capacitance (3393.8 F g-1 at 5 mV s-1). The optimized nanocomposite showed the energy density, power density, and Coulombic efficiency of 74.1 W h.kg-1, 443.7 W.kg-1, and 101.3%, respectively, with excellent electrochemical stability. After testing an asymmetrical supercapacitor with a Co3O4@Co/N-CNT/Ag NPs/rGO/nickel foam cathode and an activated carbon/nickel foam anode, it showed 4.9 W h.kg-1 of energy density and 5000.0 W.kg-1 of power density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据