4.7 Article

Intercropping of Cyphomandra betacea with Different Ploidies of Solanum Sect. Solanum (Solanaceae) Wild Vegetables Increase Their Selenium Uptakes

期刊

PLANTS-BASEL
卷 12, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/plants12040716

关键词

Cyphomandra betacea; intercropping; Solanum sect; Solanum; selenium; antioxidant enzyme activity

向作者/读者索取更多资源

Intercropping of Cyphomandra betacea with wild vegetables from Solanum sect. Solanum increases selenium uptake and enhances plant growth and metabolic activity.
Selenium (Se) deficiency causes various diseases in humans. Se can be obtained from fruits and vegetables. In this study, the fruit tree Cyphomandra betacea was intercropped with three Solanum sect. Solanum (Solanaceae) wild vegetables [diploid (S. photeinocarpum), tetraploid (colchicine-induced S. photeinocarpum), and hexaploid (S. nigrum)], respectively, and Se uptakes of these plants were determined by a pot experiment. Intercropping decreased the biomass, photosynthetic pigment content, and superoxide dismutase activity of C. betacea, but increased the peroxidase (POD) activity, catalase (CAT) activity, and soluble protein content of C. betacea. These indicators' values of sect. Solanum increased after intercropping. The contents of Se increased in C. betacea and sect. Solanum after intercropping. Intercropped with diploid, tetraploid, and hexaploid increased the shoot Se contents in C. betacea by 13.73%, 17.49%, and 26.50%, respectively, relative to that of C. betacea monoculture. Intercropped with C. betacea increased the shoot Se contents in diploid, tetraploid, and hexaploid by 35.22%, 68.86%, and 74.46%, respectively, compared with their respective monoculture. The biomass and Se content of intercropped sect. Solanum showed linear relationships with the biomass and Se content of their monocultures. The biomass and Se content of intercropped C. betacea also exhibited linear relationships with that of sect. Solanum monocultures. Correlation and grey relational analyses revealed that the CAT activity, POD activity, and soluble protein content were the top three indicators closely associated with the C. betacea shoot Se content. The POD activity, soluble protein content, and translocation factor were the top three indicators closely associated with sect. Solanum shoot Se content. Therefore, intercropping can promote the Se uptake in C. betacea and sect. Solanum wild vegetables.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据