4.7 Article

Antileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru

期刊

PLANTS-BASEL
卷 12, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/plants12020322

关键词

alkaloids; Amaryllidaceae; Clinanthus milagroanthus; Leishmania braziliensis; molecular docking

向作者/读者索取更多资源

The antileishmanial activity of an alkaloid extract from Clinanthus milagroanthus bulbs was evaluated against Leishmania braziliensis. The extract inhibited the growth of the parasite at different concentrations and showed potential binding capabilities with a specific enzyme. This study provides scientific evidence for the development of bioactive molecules from C. milagroanthus.
Leishmaniasis is a worldwide infectious parasitic disease caused by different species of protozoa of the genus Leishmania, which are transmitted to animals and humans through the bite of insects of the Psychodidae family. In the present work, the antileishmanial activity of an alkaloid extract of the bulbs of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) was evaluated in vitro, in vivo, and in silico against the parasite Leishmania braziliensis, and the chemical profile of the sample was determined by GC-MS analysis. At concentrations of 1, 10, and 100 mu g.mL(-1), the alkaloid extract presented inhibition percentages of 8.7%, 23.1%, and 98.8%, respectively, against L. braziliensis with a p < 0.05, and IC50 values of 18.5 +/- 0.3 mu g.mL(-1). Furthermore, at a dose of 1.0 mg.kg(-1), a greater decrease in lesion size was observed (90%) for in vivo assays, as well as a decrease in infection (96%), finding no significant differences (p > 0.05) in comparison with amphotericin B (92% and 98%, respectively). Eleven alkaloids were identified in C. milagroanthus bulbs: galanthamine, vittatine/crinine, 8-O-demethylmaritidine, anhydrolycorine, 11,12-dehydroanhydrolycorine, hippamine, lycorine, 2-hydroxyanhydrolycorine, 7-hydroxyclivonine, 2 alpha-hydroxyhomolycorine, and 7-hydroxyclivonine isomer. A molecular model of Leishmania braziliensis trypanothione reductase (TRLb) was built using computational experiments to evaluate in silico the potential of the Amaryllidaceae alkaloid identified in C. milagroanthus toward this enzyme. The structures galanthamine, 7-hydroxyclivonine isomer, and crinine showed better estimated free energy of binding than the reference compound, amphotericin B. In conclusion, this is the first in vitro, in vivo, and in silico report about the antileishmanial potential and alkaloid profiling of the extract of C. milagroanthus bulbs, which could become an interesting source of bioactive molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据