4.6 Article

Effects of rheological stratification and elasticity of lithosphere on subduction initiation

期刊

FRONTIERS IN EARTH SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/feart.2022.988320

关键词

plate rigidity; thermal crack; water weakening; early earth; subduction initiation

资金

  1. Japan Society for the Promotion of Science [20H00200]

向作者/读者索取更多资源

This study investigates the effects of rheological stratification and elasticity of lithosphere on plate subduction initiation, finding that the formation of thermal cracks and penetration of seawater played a crucial role in the initiation of plate subduction on the early Earth.
The breaking and bending of rigid and elastic lithosphere was probably essential for the initiation of plate subduction, although how this occurred is still poorly understood. Here we test effects of rheological stratification and elasticity of lithosphere on subduction initiation, which are possibly resulting from thermal cracking and seawater penetration into the lithosphere. In addition to the strong influence of water on rheological behavior, the material rigidity is also sensitive to the development of crack and fluid saturation. Numerical modeling indicates that water-weakening and a low-rigidity lithosphere are essential for the initiation of plate subduction, and such conditions are likely to have arisen on the early Earth due to extensive thermal contraction of the planet. Our results indicate that the formation of thermal cracks and penetration of seawater play an important role on subduction initiation, and are likely to have operated on planets other than Earth. However, if the ocean is disappeared, fluid penetration is likely to cease and plate tectonics would have stopped due to increasing the strength and rigidity of the lithosphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据