4.7 Article

Detection Method for Tomato Leaf Mildew Based on Hyperspectral Fusion Terahertz Technology

期刊

FOODS
卷 12, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/foods12030535

关键词

tomato; leaf mildew; terahertz time-domain spectroscopy; near infrared hyperspectral technology; multi-source information fusion

向作者/读者索取更多资源

A new method was developed for the multi-source detection of tomato leaf mildew by combining near-infrared hyperspectral imaging and THz time-domain spectroscopy. The models incorporating near-infrared hyperspectral imaging, THz absorbance, and power spectra achieved high recognition rates for different grades of tomato leaf mildew infestation. A fusion diagnosis and health evaluation model of tomato leaf mildew with hyperspectral fusion THz was established and improved the recognition accuracy compared to single detection methods.
Leaf mildew is a common disease of tomato leaves. Its detection is an important means to reduce yield loss from the disease and improve tomato quality. In this study, a new method was developed for the multi-source detection of tomato leaf mildew by THz hyperspectral imaging through combining internal and external leaf features. First, multi-source information obtained from tomato leaves of different disease grades was extracted by near-infrared hyperspectral imaging and THz time-domain spectroscopy, while the influence of low-frequency noise was removed by the Savitzky Golay (SG) smoothing algorithm. A genetic algorithm (GA) was used to optimize the selection of the characteristic near-infrared hyperspectral band. Principal component analysis (PCA) was employed to optimize the THz characteristic absorption spectra and power spectrum dimensions. Recognition models were developed for different grades of tomato leaf mildew infestation by incorporating near-infrared hyperspectral imaging, THz absorbance, and power spectra using the backpropagation neural network (BPNN), and the models had recognition rates of 95%, 96.67%, and 95%, respectively. Based on the near-infrared hyperspectral features, THz time-domain spectrum features, and classification model, the probability density of the posterior distribution of tomato leaf health parameter variables was recalculated by a Bayesian network model. Finally, a fusion diagnosis and health evaluation model of tomato leaf mildew with hyperspectral fusion THz was established, and the recognition rate of tomato leaf mildew samples reached 97.12%, which improved the recognition accuracy by 0.45% when compared with the single detection method, thereby achieving the accurate detection of facility diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据