4.7 Article

Dynamic investigation of centralized and decentralized storage systems for a district heating network

期刊

JOURNAL OF ENERGY STORAGE
卷 56, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2022.106072

关键词

District heating; Underfloor heating system; Dynamic energy simulation; Decentralized storage; Schedule-based control

资金

  1. European Union
  2. [892071]

向作者/读者索取更多资源

This study investigates a district heating network with decentralized storage for hot water, using a schedule-based approach to control the charging of the system. The simulation is conducted using a component-based tool called INTEMA, which allows for high temporal resolution and adjustable time steps. The results show that the decentralized approach leads to energy savings of 18% and reduces thermal losses by 22% compared to a standard system.
District heating is an efficient and promising way to cover the residential space-heating and domestic hot water needs, resulting in economic and environmental benefits, especially if operated by renewable power stations, when compared to fossil fuels. In this direction, the present study investigates in detail a district heating network with novel decentralized storage for domestic hot water (enerboxx scenario), over centralized storage systems, applying a specific schedule-based approach for the coordinated hot water tank charging. The goal of this design is to properly control the system by charging it at predetermined time periods during the day aiming at i) diminishing the thermal losses and ii) reducing the thermal demand from the grid, over the period of a day. The simulation is conducted with a newly developed component-based tool, called INTEMA, which is based on the Modelica language. This encompasses the ability to discretize with high temporal resolution and adjustable time steps the overall grid configuration, with the support of customizable level of detail models for simulating key system components such as the storage tanks, the piping and the dwelling needs, as well as the application of an advanced control system over the district heating network and the dwellings. More specifically, a combined control system that controls both operating parameters in the network and inside the dwellings is applied. The developed system model is verified against available data for a standard centralized storage system (reference scenario) and afterwards, the novel decentralized design is compared against corresponding results of the standard system, as concerns key operational parameters; indicatively the temperature levels of the hot water and the heat load demand. The analysis is conducted for a heating network of 9 dwellings in Austria, which have an underfloor heating system, a system for covering the domestic hot water demand, considering also that each of these 9 dwellings is characterized by a unique demand profile. It was found that the decentralized approach leads to lower demand and there are energy savings of 18 % compared to the reference scenario, while the thermal losses are reduced by about 22 %. Moreover, a parametric study regarding the storage tank volume and the heat exchanger thermal transmittance in the tank is conducted, in order to examine the impact of these design parameters on the system dynamic behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据