4.7 Article

Thermal analysis of modified Z-shaped air-cooled battery thermal management system for electric vehicles br

期刊

JOURNAL OF ENERGY STORAGE
卷 58, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2022.106356

关键词

Lithium ion battery; Air cooling; Battery thermal management system

向作者/读者索取更多资源

In this paper, we design a modified z-shaped air cooling system with a non-vertical structure and study the thermal behavior of lithium iron phosphate power battery. The new system tilts the arrangement of battery packs to form a non-vertical flow channel structure. Compared with the traditional system, the modified air-cooled battery thermal management system improves cooling performance and temperature uniformity.
The development of new energy vehicles (NEVs) is an effective measure to cope with climate change and mitigate the exhaustion of non-renewable energy sources. Lithium ion power battery is crucial to the reliability and safety of NEVs. In this paper, we design a modified z-shaped air cooling system with non-vertical structure, and study the thermal behavior of lithium iron phosphate power battery. The new system tilts the arrangement of battery packs according to different angles, thus forming a non-vertical flow channel structure. Compared with the traditional Z-shaped air cooling system, the maximum temperature of the battery pack is reduced from the initial 38.15 degrees C to 34.14 degrees C with a decrease of 10.5 %, and the temperature difference is reduced from the initial 2.59 degrees C to 1.97 degrees C with a decrease of 23.9 %. The modified air-cooled battery thermal management system speeds up the heat exchange rate between the air and the battery pack, which is beneficial to improve the cooling performance and temperature uniformity. This study propose a foundation design of the modified z-shaped air cooling system to improve the safety of electric vehicles, which has certain engineering value for the further development of BTMS

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据