4.6 Article

Dual incorporation of non-canonical amino acids enables production of post-translationally modified selenoproteins

期刊

FRONTIERS IN MOLECULAR BIOSCIENCES
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmolb.2023.1096261

关键词

selenoproteins; acetyl-lysine; post-translational modifications; genetic code expansion; selenocysteine; synthetic biology

向作者/读者索取更多资源

Post-translational modifications (PTMs) are crucial for regulating protein function in eukaryotes. Genetic code expansion (GCE) in bacteria is a strategy to study these modifications, as bacteria have low frequency of natural PTMs. By combining GCE with selenocysteine insertion technologies, a genetic system was created to study post-translational modifications in selenoproteins. This method allows for site-specific modification of multiple proteins and has the potential to advance our understanding of selenoprotein functions.
Post-translational modifications (PTMs) can occur on almost all amino acids in eukaryotes as a key mechanism for regulating protein function. The ability to study the role of these modifications in various biological processes requires techniques to modify proteins site-specifically. One strategy for this is genetic code expansion (GCE) in bacteria. The low frequency of post-translational modifications in bacteria makes it a preferred host to study whether the presence of a post-translational modification influences a protein's function. Genetic code expansion employs orthogonal translation systems engineered to incorporate a modified amino acid at a designated protein position. Selenoproteins, proteins containing selenocysteine, are also known to be post-translationally modified. Selenoproteins have essential roles in oxidative stress, immune response, cell maintenance, and skeletal muscle regeneration. Their complicated biosynthesis mechanism has been a hurdle in our understanding of selenoprotein functions. As technologies for selenocysteine insertion have recently improved, we wanted to create a genetic system that would allow the study of post-translational modifications in selenoproteins. By combining genetic code expansion techniques and selenocysteine insertion technologies, we were able to recode stop codons for insertion of N-epsilon-acetyl-L-lysine and selenocysteine, respectively, into multiple proteins. The specificity of these amino acids for their assigned position and the simplicity of reverting the modified amino acid via mutagenesis of the codon sequence demonstrates the capacity of this method to study selenoproteins and the role of their post-translational modifications. Moreover, the evidence that Sec insertion technology can be combined with genetic code expansion tools further expands the chemical biology applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据