4.6 Article

Synergistic Antibacterial Effect and Mechanism of Allicin and an Enterobacter cloacae Bacteriophage

期刊

MICROBIOLOGY SPECTRUM
卷 11, 期 1, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.03155-22

关键词

Enterobacter cloacae; allicin; bacteriophage; synergy; antibacterial mechanism

向作者/读者索取更多资源

This study constructed a combination of allicin and Enterobacter cloacae bacteriophage, which effectively lowered the dosage of allicin and overcame bacterial drug-resistance. Allicin interacts with bacterial DNA and disrupts it by cleaving phosphate diester bonds, while the bacteriophage destroys the cell wall and membrane of bacteria. The synergistic effect of this combination improves antibacterial efficiency and avoids drug-resistance.
Enterobacter cloacae is a troublesome pathogen causing refractory infections of the lower respiratory tract, urethra and abdominal cavity, endocarditis, osteomyelitis, and neonatal septicemia. It is prone to developing resistance to ordinary antibiotics and has brought a serious problem to clinical treatment. An artful synergistic combination of an antibacterial natural product allicin and a newly isolated bacteriophage, named BD523, was constructed herein. This combination significantly lowered effective dosage of allicin and effectually overcame bacterial drug-resistance. We experimentally evidenced that allicin interacts with bacterial DNA in the groove region by inserting itself into the DNA double helix and, subsequently, disrupts the bacterial DNA by cleaving phosphate diester bonds of deoxynucleotides. Further, BD523 destroys the cell wall and membrane of bacteria by synthesizing lyase proteins, including holin and endolysins. Thus, the synergistic effect of the combination benefits from complementary targeting mechanisms of allicin and BD523. They cooperatively act on bacterial DNA, cell wall, and membrane to improve antibacterial efficiency and avoid drug-resistance.IMPORTANCE Bacterial drug-resistance is a serious problem afflicting pharmacologists all over the world. Many strategies have been developed and practiced to overcome it, but almost no one is satisfactory due to the continual change of bacteria. Combinations of antibiotics and bacteriophages are promising because of the cooperation of 2 bacterial killers with distinct mechanisms. The combination of allicin and an Enterobacter cloacae bacteriophage reported herein can significantly improve the effect of allicin against E. cloacae. Its synergistic effect was even superior to the combination of bacteriophage and neomycin, of which the MIC was significantly lower than allicin. It was ascribed to the complementary antibacterial and the possible resistance-proof mechanism of bacteriophage and allicin. This study provided a pragmatic way to conquer the cunning bacterium, and may offer reference for research and development of new bacterial killers. Bacterial drug-resistance is a serious problem afflicting pharmacologists all over the world. Many strategies have been developed and practiced to overcome it, but almost no one is satisfactory due to the continual change of bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据