4.7 Article

Lotus Bee Pollen Extract Inhibits Isoproterenol-Induced Hypertrophy via JAK2/STAT3 Signaling Pathway in Rat H9c2 Cells

期刊

ANTIOXIDANTS
卷 12, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/antiox12010088

关键词

lotus bee pollen extract; cardiomyocyte hypertrophy; JAK2; STAT3 signaling pathway; oxidative stress; inflammation

向作者/读者索取更多资源

This paper explores the effect of lotus bee pollen extract on cardiomyocyte hypertrophy (CH) and its mechanism. The study found that the extract can reduce oxidative stress levels, inhibit inflammatory response and apoptosis, and protect against CH. Furthermore, it was revealed that the extract targets the JAK2/STAT3 pathway to exert its protective effect on cardiomyocytes.
Bee pollen possesses an anti-cardiomyocyte injury effect by reducing oxidative stress levels and inhibiting inflammatory response and apoptosis, but the possible effect mechanism has rarely been reported. This paper explores the effect of the extract of lotus bee pollen (LBPE) on cardiomyocyte hypertrophy (CH) and its mechanism. The main components of LBPE were identified via UPLC-QTOF MS. An isoproterenol-induced rat H9c2 CH model was subsequently used to evaluate the protection of LBPE on cells. LBPE (100, 250 and 500 mu g center dot mL(-1)) reduced the surface area, total protein content and MDA content, and increased SOD activity and GSH content in CH model in a dose-dependent manner. Meanwhile, quantitative real-time PCR trials confirmed that LBPE reduced the gene expression levels of CH markers, pro-inflammatory cytokines and pro-apoptosis factors, and increased the Bcl-2 mRNA expression and Bcl-2/Bax ratio in a dose-dependent manner. Furthermore, target fishing, bioinformatics analysis and molecular docking suggested JAK2 could be a pivotal target protein for the main active ingredients in the LBPE against CH. Ultimately, Western blot (WB) trials confirmed that LBPE can dose-dependently inhibit the phosphorylation of JAK2 and STAT3. The results show that LBPE can protect against ISO-induced CH, possibly via targeting the JAK2/STAT3 pathway, also suggesting that LBPE may be a promising candidate against CH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据