4.7 Article

UHPLC-MS Chemical Fingerprinting and Antioxidant, Enzyme Inhibition, Anti-Inflammatory In Silico and Cytoprotective Activities of Cladonia chlorophaea and C. gracilis (Cladoniaceae) from Antarctica

期刊

ANTIOXIDANTS
卷 12, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/antiox12010010

关键词

Cladonia; secondary metabolites; antioxidant; enzyme inhibition; anti-inflammatory; cytoprotective; Antarctic lichens

向作者/读者索取更多资源

This study investigated the metabolomic characterization and biological potential of two lichen species, Cladonia chlorophaea and C. gracilis, in maritime Antarctica. Nineteen compounds were identified in each species, with better results in C. chlorophaea. The study demonstrates the potential of Cladonia species in the prevention and treatment of central nervous system pathologies, inflammatory disorders, and metabolic alterations.
The lichen species Cladonia chlorophaea and C. gracilis (Cladoniaceae) are widely distributed in the island archipelago of maritime Antarctica and represent a natural resource of scientific interest. In this work, the metabolomic characterization of the ethanolic extracts of these species and the determination of the antioxidant activity, enzymatic inhibition and anti-inflammatory potential of selected compounds on the 5-lipoxygenase enzyme by molecular docking and cytoprotective activity in the SH-SY5Y cell line were carried out. Nineteen compounds were identified by liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS) in each of the species. The contents of phenolic compounds, antioxidant activity, the inhibition of cholinesterases (acetylcholinesterase and butyrylcholinesterase) and digestive enzymes (alpha-glucosidase and pancreatic lipase) were variable among species, with better results in C. chlorophaea. Molecular docking evidenced significant binding affinities of some compounds for the 5-lipoxygenase enzyme, together with outstanding pharmacokinetic properties. Both extracts were shown to promote cell viability and a reduction in reactive oxygen species production in an H2O2-induced oxidative stress model. This study contributes to the chemical knowledge of the Cladonia species and demonstrates the biological potential for the prevention and promising treatment of central nervous system pathologies, inflammatory disorders and metabolic alterations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据