4.7 Article

Dexmedetomidine Attenuates Apoptosis and Neurological Deficits by Modulating Neuronal NADPH Oxidase 2-Derived Oxidative Stress in Neonates Following Hypoxic Brain Injury

期刊

ANTIOXIDANTS
卷 11, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/antiox11112199

关键词

dexmedetomidine; NADPH oxidase 2; oxidative stress; neuronal apoptosis; neurological deficits; hypoxic brain injury; neonates

资金

  1. National Natural Science Foundation of China [82001166, 82171186]
  2. Joint Funds for the Innovation of Science and Technology, Fujian Province [2019Y9028, 2019Y9023]
  3. Training Project for Talents of Fujian Provincial Health Commission [2020GGA013]
  4. Natural Science Foundation of Fujian Province [2020J05261]

向作者/读者索取更多资源

Dex provides neuroprotection against neonatal hypoxic brain injury by suppressing neuronal NOX2 activation and reducing oxidative stress.
Hypoxic-ischemic brain injury is an important cause of neonatal neurological deficits. Our previous study demonstrated that dexmedetomidine (Dex) provided neuroprotection against neonatal hypoxic brain injury; however, the underlying mechanisms remain incompletely elucidated. Overactivation of NADPH oxidase 2 (NOX2) can cause neuronal apoptosis and neurological deficits. Hence, we aimed to investigate the role of neuronal NOX2 in Dex-mediated neuroprotection and to explore its potential mechanisms. Hypoxic injury was modeled in neonatal rodents in vivo and in cultured hippocampal neurons in vitro. Our results showed that pre- or post-treatment with Dex improved the neurological deficits and alleviated the hippocampal neuronal damage and apoptosis caused by neonatal hypoxia. In addition, Dex treatment significantly suppressed hypoxia-induced neuronal NOX2 activation; it also reduced oxidative stress, as evidenced by decreases in intracellular reactive oxygen species (ROS) production, malondialdehyde, and 8-hydroxy-2-deoxyguanosine, as well as increases in the antioxidant enzymatic activity of superoxide dismutase and glutathione peroxidase in neonatal rat hippocampi and in hippocampal neurons. Lastly, the posthypoxicneuroprotective action of Dex was almost completely abolished in NOX2-deficient neonatal mice and NOX2-knockdown neurons. In conclusion, our data demonstrated that neuronal NOX2-mediated oxidative stress is involved in the neuroprotection that Dex provides against apoptosis and neurological deficits in neonates following hypoxia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据