4.7 Article

Micro-alloyed Mg-Ca: Corrosion susceptibility to heating history and a plain problem-solving approach

期刊

JOURNAL OF MAGNESIUM AND ALLOYS
卷 11, 期 4, 页码 1193-1205

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.jma.2022.12.014

关键词

Magnesium; Micro -alloying; Thermomechanical processing; Corrosion; Impurity

向作者/读者索取更多资源

Thermomechanical processing can enhance the corrosion performance of lean Mg-Ca alloys, but annealing can accelerate the corrosion rate due to Fe precipitation. Micro-alloying with indium can effectively restrain the formation of Fe-containing precipitates. This finding provides a foundation for developing Mg-Ca-based alloys with high corrosion resistance, superior electrochemical performance, and excellent mechanical properties.
The exceptionally low corrosion rate ( & SIM;0.1 mm y -1 in concentrated NaCl solution for 7 days) enables lean Mg-Ca alloys great potential for diverse applications, particularly if relevant properties (e.g. mechanical strength, electrochemical performance, etc.) can be enhanced by thermomechanical processing. However, herein it is demonstrated that the corrosion performance of lean Mg-Ca is susceptible to the heating process. The corrosion rate of Mg-0.15 wt% Ca alloy is remarkably accelerated after annealing even for a short time (4 h at 400 & DEG;C) because Fe precipitation readily takes place. Fortunately, it is found that micro-alloying with dedicated additional elements is able to solve this problem. Nevertheless, the problem-solving capability is dependent on the element category, particularly the ability of the alloying element to constrain the Fe precipitation. Among the three studied elements (i.e. Sn, Ge and In), only In shows good competence of restricting the formation of Fe-containing precipitates, thereby contributing to retention of the superior corrosion resistance after annealing even at a rigorous condition (24 h at 450 & DEG;C). The finding creates good foundation for follow-up work of developing lean Mg-Ca-based alloys combining high corrosion resistance, superior electrochemical performance with excellent mechanical properties for applications as biodegradable implants and anode materials for aqueous batteries. & COPY; 2023 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据