4.7 Article

Concomitant Administration of Red Ginseng Extract with Lactic Acid Bacteria Increases the Plasma Concentration of Deglycosylated Ginsenosides in Healthy Human Subjects

期刊

BIOMOLECULES
卷 12, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/biom12121896

关键词

deglycosylation metabolism; ginsenosides; lactic acid bacteria (LAB); pharmacokinetics; red ginseng extract (RGE)

向作者/读者索取更多资源

This study investigates the interactions between red ginseng extract (RGE) and lactic acid bacteria (LAB) in terms of in vitro and in vivo deglycosylation metabolism and the pharmacokinetics of ginsenosides. The results show that the co-administration of RGE and LAB significantly increases the plasma concentrations of deglycosylated ginsenosides and facilitates the deglycosylation metabolism of ginsenosides.
With the increased frequency of red ginseng extract (RGE) and lactic acid bacteria (LAB) co-administration, we aimed to investigate the interactions between RGE and LAB with regard to in vitro and in vivo deglycosylation metabolism and the pharmacokinetics of ginsenosides. As a proof-of-concept study, five healthy humans were administered RGE (104.1 mg of total ginsenosides/day) with or without co-administration of LAB (2 g, 1 billion CFU/day) for 2 weeks, and the plasma concentrations of ginsenosides in human plasma were monitored. The plasma exposure to compound K (CK), ginsenoside Rh2 (GRh2), protopanaxadiol (PPD), and protopanaxatriol (PPT) in the concomitant administration RGE and LAB groups increased by 2.7-, 2.1-, 1.6-, and 3.5-fold, respectively, compared to those in the RGE administration group, without a significant change in T-max. The plasma concentrations of GRb1, GRb2, and GRc remained unchanged, whereas the AUC values of GRd and GRg3 significantly decreased in the concomitant administration RGE and LAB groups. To understand the underlying mechanism, the in vitro metabolic activity of ginsenosides was measured during the fermentation of RGE or individual ginsenosides in the presence of LAB for 1 week. Consistent with the in vivo results, co-incubation with RGE and LAB significantly increased the formation rate of GRh2, CK, PPD, and PPT. These results may be attributed to the facilitated deglycosylation of GRd and GRg3 and the increased production of GRh2, CK, PPD, and PPT by the co-administration of LAB and RGE. In conclusion, LAB supplementation increased the plasma concentrations of deglycosylated ginsenosides, such as GRh2, CK, PPD, and PPT, through facilitated deglycosylation metabolism of ginsenosides in the intestine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据