4.7 Article

Understanding Calmodulin Variants Affecting Calcium-Dependent Inactivation of L-Type Calcium Channels through Whole-Cell Simulation of the Cardiac Ventricular Myocyte

期刊

BIOMOLECULES
卷 13, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/biom13010072

关键词

CPVT4; LQT14; calmodulin; arrhythmia; heart; LQT; CPVT

向作者/读者索取更多资源

Mutations in the calcium-sensing protein calmodulin (CaM) can cause cardiac arrhythmia diseases, Long QT Syndrome 14 (LQT14) and Catecholaminergic Polymorphic Ventricular Tachycardia Type 4 (CPVT4), with different severities. The CaM mutants associated with LQT14 disrupt the calcium-dependent inactivation of the L-Type calcium channel (LCC), while CPVT4 mutants have changes in their affinity to the ryanodine receptor. Simulations in a model for excitation-contraction coupling show that LQT14 variants can lead to a CPVT4 phenotype under certain conditions. These findings emphasize the importance of calcium-dependent inactivation in heart function.
Mutations in the calcium-sensing protein calmodulin (CaM) have been linked to two cardiac arrhythmia diseases, Long QT Syndrome 14 (LQT14) and Catecholaminergic Polymorphic Ventricular Tachycardia Type 4 (CPVT4), with varying degrees of severity. Functional characterization of the CaM mutants most strongly associated with LQT14 show a clear disruption of the calcium-dependent inactivation (CDI) of the L-Type calcium channel (LCC). CPVT4 mutants on the other hand are associated with changes in their affinity to the ryanodine receptor. In clinical studies, some variants have been associated with both CPVT4 and LQT15. This study uses simulations in a model for excitation-contraction coupling in the rat ventricular myocytes to understand how LQT14 variant might give the functional phenotype similar to CPVT4. Changing the CaM-dependent transition rate by a factor of 0.75 corresponding to the D96V variant and by a factor of 0.90 corresponding to the F142L or N98S variants, in a physiologically based stochastic model of the LCC prolonger, the action potential duration changed by a small amount in a cardiac myocyte but did not disrupt CICR at 1, 2, and 4 Hz. Under beta-adrenergic simulation abnormal excitation-contraction coupling was observed above 2 Hz pacing for the mutant CaM. The same conditions applied under beta-adrenergic stimulation led to the rapid onset of arrhythmia in the mutant CaM simulations. Simulations with the LQT14 mutations under the conditions of rapid pacing with beta-adrenergic stimulation drives the cardiac myocyte toward an arrhythmic state known as Ca2+ overload. These simulations provide a mechanistic link to a disease state for LQT14-associated mutations in CaM to yield a CPVT4 phenotype. The results show that small changes to the CaM-regulated inactivation of LCC promote arrhythmia and underscore the significance of CDI in proper heart function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据