4.5 Review

Matrix mechanophysical factor: pore size governs the cell behavior in cancer

期刊

ADVANCES IN PHYSICS-X
卷 8, 期 1, 页码 -

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/23746149.2022.2153624

关键词

Cancer; extracellular matrix; 3D scaffolds; pore size; biomaterials

向作者/读者索取更多资源

Understanding the relationship between tumors and their microenvironment is crucial for better understanding tumor progression and metastasis. Biomaterials that mimic the extracellular matrix must provide mechanical cues that cells receive from their 3D environment. Pore size is an important but less studied factor related to tumor invasion and migration. Electrospinning is a reliable technique for controlling the pore size of biomaterials. A comprehensive interpretation of ECM pore size contributes to a better understanding of its interaction with tumor progression and can be used as a promising target for cancer treatment.
Cancer tissues are a heterogeneously multifaceted assembly. Understanding the relationship of tumors with their microenvironment is also required to understand the tumor progression and metastasis better. Like tumors, the tumor microenvironment (TME) is heterogeneous, offering numerous mechanobiological, mechanochemical, and mechanophysical cues. Biomaterials impersonating extracellular matrix (ECM) properties must provide the mechanical cues cells get from their 3D extracellular environment. Pore size is one imperative yet less studied ECM factor implicated in the invasion and migration of the tumor. Several techniques are used to control the pore size of biomaterials constructed for a distinct tissue. Electrospinning is one of the most steadfast techniques for producing scaffolds with the preferred pore size. A comprehensive interpretation of ECM pore size would contribute toward a better understanding of the reciprocal interaction between pore size and tumor progression and can be used as a promising target for cancer treatments. In this review, we abridged the knowledge pertaining to (1) ECM and pore size, (2) the importance of pore size and its interplay with cancer, and (3) current advancement in the field of biomaterials to study pore size. Overall, this review will cover the effect of pore size on tumor cell behavior concerning electrospinning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据