4.8 Article

Modified polymer 3D printing enables the formation of functionalized micro-metallic architectures

期刊

ADDITIVE MANUFACTURING
卷 61, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2022.103317

关键词

Catalyst resin; Micro 3D printing; Electroless; deposition; Metallization; Magnetically; activated microrobot

向作者/读者索取更多资源

This paper presents a method of micro 3D printing using catalyst resin to achieve uniform metallization of complex microstructure surfaces through electroless deposition (ELD). The technology allows for the manufacturing of micro 3D structures with fine resolutions of few tens of micrometers in a regular micro 3D printer with excellent surface finish, conductivity, and magnetism. It shows exceptional potential in manufacturing complex metallic micro 3D structures in an environmentally friendly way and at a significantly reduced cost for a wide range of applications, serving as an improved alternative to conventional techniques.
Three-dimensional metallic microstructures have attracted a significant attention with their unique properties to be employed in a vast range of applications. However, the drawbacks of existing manufacturing technologies have prompted researchers' interest in polymer 3D printing for the creation of complex micro 3D structures followed by metallization. Yet, the conventional metallization techniques may hinder the uniformity of metallic layer. Hence in this paper, we have established micro 3D printing with a catalyst resin which enables uniform metallization of complex microstructure surfaces through electroless deposition (ELD). The resin is infused with catalyst precursor to facilitate catalytic action required for ELD. The developed, optimized procedure of ELD with pre-treatment of structures enhances the quality of metallization through the uniform coating on both internal and external surfaces of the microstructure. As such, the technology promotes ELD of any required metal on microstructure surface with excellent surface finish, conductivity, or magnetism as required by the researcher. Furthermore, the technology is capable of manufacturing micro 3D structures of fine resolutions of few tens of micro-meters in a regular micro 3D printer. To demonstrate the application of this technique in a practical scenario, a 3D printed mini wheel was magnetized and functioned as a magnetically activated microrobot under an external magnetic field. And the proposed method displayed exceptional potential in manufacturing complex metallic micro 3D structures with excellent properties as required in an environmentally friendly way and at a significantly reduced cost for a vast range of applications. And this proved to be a much-improved alternative to the conventional techniques of manufacturing metallic micro 3D structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据