4.8 Article

Direct dehydrogenation of propane over Pd nanoparticles encapsulated within IPC zeolites with tunable pore sizes

期刊

APPLIED MATERIALS TODAY
卷 29, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apmt.2022.101644

关键词

Dehydrogenation; Propane; Propene; IPC zeolites; Pd nanoparticles

资金

  1. GAUK project [1372819]
  2. Czech Science Foundation [EXPRO 19-27551X]
  3. OP VVV Excellent Research Teams [CZ.02.1.01/0.0/0.0/15_003/0000417-CUCAM]
  4. U.S. Army RDECOM Atlantic, U.S.A [W911NF-17-S-0003]

向作者/读者索取更多资源

In this study, well-dispersed Pd nanoparticles were encapsulated within IPC-2 and IPC-4 zeolites using the ADOR process. The Pd@IPC-2 and Pd@IPC-4 showed higher catalytic activity than Pd/IPC-2 and Pd/IPC-4 in the direct dehydrogenation of propane. The size of zeolite channels and the structure of the framework strongly influenced the catalytic activity.
Propane dehydrogenation (PDH) yields propene, a valuable feedstock in increasing global demand. Yet, despite recent advances in supported metal nanoparticles (NPs) for such catalytic applications, preventing nanoparticle agglomeration remains a challenge. In this study, we prepared well-dispersed Pd nanoparticles and encapsulated them within IPC-2 and IPC-4 zeolites using the Assembly, Disassembly, Organization, and Reassembly (ADOR) process based on the 3D-2D-3D transformation. By structural and textural analysis, we confirmed the synthesis of two 'ADORable' zeolites incorporated with Pd nanoparticles, namely Pd@IPC-2 and Pd@IPC-4. In the direct dehydrogenation of propane, Pd NPs encapsulated within IPC-2 and IPC-4 zeolites outperformed their impreg-nated counterparts (Pd/IPC-2 and Pd/IPC-4), with Pd@IPC-2 showing a higher catalytic activity than Pd@IPC-4. Accordingly, in addition to the number of surface Pd atoms, the size of the zeolite channels and the structure of the framework strongly affect the catalytic activity of encapsulated Pd. Moreover, confining Pd NPs inside zeolite channels prevented their sintering and agglomeration during the reaction as Pd NPs in impregnated catalysts expanded during the reaction. However, the structure of the zeolite encapsulated with Pd catalysts partly collapsed due to the harsh conditions of the dehydrogenation reaction, hindering access to Pd NPs, as observed in IR spectra. Therefore, palladium NPs are stable within zeolites and do not sinter, but their catalytic activity gradually decreases with the formation of carbon deposits. Although these deposites are removable by calci-nation, reactivation does not completely restore the original activity due to framework disruption and limited access to the active species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据