4.5 Article

A bismuth silver pnictohalide alternative to perovskite in fully-printable triple-mesoscopic solar cells

期刊

SUSTAINABLE ENERGY & FUELS
卷 7, 期 4, 页码 1067-1076

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2se01324j

关键词

-

向作者/读者索取更多资源

Recent studies have focused on improving the efficiency of Ag3BiI6 solar cells, but most have overlooked cost-effectiveness and scalability. This study explores the feasibility of Ag3BiI6 in fully-printable triple-mesoscopic solar cells and investigates the effect of pre-treatment and post-treatment on their performance. The results show a potential for developing all inorganic Bi-based absorbers in printable solar cells.
Recent Ag3BiI6 solar cells have demonstrated promising efficiency, however, most have focused on mesoporous n-i-p configuration, using expensive hole transport materials (e.g., P3HT, PTAA and spiro-OMeTAD) and a Au counter electrode. To lower the cost and potentially enable larger scale Ag3BiI6 solar cells, herein, this study provides the first feasibility examination of Ag3BiI6 in fully-printable triple-mesoscopic (TiO2/ZrO2/carbon) solar cells (TM-SCs) and explores the effect of pre-treatment with small molecules and post-treatment (CuSCN) on the overall Ag3BiI6 TM-SC performance. An Ag3BiI6 solar cell with a power conversion efficiency (PCE) of 0.38% (J(sc) = 1.97 mA cm(-2); V-oc = 0.49 V; fill factor = 0.39) is demonstrated under 1 sun irradiation with two-month dark-storage stability in the ambient atmosphere. An improved V-oc from 0.43 V to 0.48 V was observed with biPY pre-treatment; a champion PCE of 0.74% (J(sc) = 2.78 mA cm(-2); V-oc = 0.56 V; fill factor = 0.48) was achieved with CuSCN post-treatment. The results reported here represent a step toward developing all inorganic Bi-based absorbers in printable TM-SCs, suggesting that further improvements should be possible with porous surface engineering and efficient charge extraction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据