4.3 Article

Optimally rejuvenated model binary glasses

期刊

PHYSICAL REVIEW MATERIALS
卷 6, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.6.125604

关键词

-

向作者/读者索取更多资源

This study examines the limits of structural rejuvenation in a highly excited model binary glass using the creation relaxation algorithm. The highly energized structure exhibits a direct transition to homogeneous plastic flow and a microstructure that is largely insensitive to this flow, suggesting the presence of a porous system-spanning network.
Using the creation relaxation algorithm developed for the atomistic modeling of the high-dose irradiation limit of crystalline systems, we explore the limits of the structural rejuvenation of a highly excited model binary glass. This high-energy athermal amorphous structure exhibits a direct transition to homogeneous plastic flow and a microstructure that is largely insensitive to this flow, being characterized by a porous system-spanning network of minimally frustrated structural motifs. The observed homogeneous plasticity is mediated by the same string-like structural excitations, which mediate structural relaxation and microplasticity at finite temperature in more relaxed structures. This highly rejuvenated structural asymptote is not far from the structural state of regions, which have experienced athermal shear localization in more relaxed samples, suggesting an optimally rejuvenated glassy structure will always be limited by that produced by shear localization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据