4.7 Article

Estimation of Relative Chlorophyll Content in Spring Wheat Based on Multi-Temporal UAV Remote Sensing

期刊

AGRONOMY-BASEL
卷 13, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy13010211

关键词

wheat; machine learning; SPAD; vegetation indices

向作者/读者索取更多资源

This study used a UAV to obtain multispectral images of spring wheat at different nitrogen application levels after heading, and combined them with SPAD values measured by a handheld chlorophyll meter. Four machine learning algorithms were used to construct SPAD value estimation models. The results showed that selecting the optimal model for different growth stages can significantly improve the accuracy of SPAD value estimation.
Relative chlorophyll content (SPAD) is an important index for characterizing the nitrogen nutrient status of plants. Continuous, rapid, nondestructive, and accurate estimation of SPAD values in wheat after heading stage can positively impact subsequent nitrogen fertilization management strategies, which regulate grain filling and yield quality formation. In this study, the estimation of SPAD of leaf relative chlorophyll content in spring wheat was conducted at the experimental base in Wuyuan County, Inner Mongolia in 2021. Multispectral images of different nitrogen application levels at 7, 14, 21, and 28 days after the wheat heading stage were acquired by DJI P4M UAV. A total of 26 multispectral vegetation indices were constructed, and the measured SPAD values of wheat on the ground were obtained simultaneously using a handheld chlorophyll meter. Four machine learning algorithms, including deep neural networks (DNN), partial least squares (PLS), random forest (RF), and Adaptive Boosting (Ada) were used to construct SPAD value estimation models at different time from heading growth stages. The model's progress was evaluated by the coefficient of determination (R-2), root mean square error (RMSE), and mean absolute error (MAPE). The results showed that the optimal SPAD value estimation models for different periods of independent reproductive growth stages of wheat were different, with PLS as the optimal estimation model at 7 and 14 days after heading, RF as the optimal estimation model at 21 days after heading, and Ada as the optimal estimation model at 28 d after heading. The highest accuracy was achieved using the PLS model for estimating SPAD values at 14 d after heading (training set R-2 = 0.767, RMSE = 3.205, MAPE = 0.060, and R-2 = 0.878, RMSE = 2.405, MAPE = 0.045 for the test set). The combined analysis concluded that selecting multiple vegetation indices as input variables of the model at 14 d after heading stage and using the PLS model can significantly improve the accuracy of SPAD value estimation, provides a new technical support for rapid and accurate monitoring of SPAD values in spring wheat.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据