4.7 Article

Optimal Effects of Combined Application of Nitrate and Ammonium Nitrogen Fertilizers with a Ratio of 3:1 on Grain Yield and Water Use Efficiency of Maize Sowed in Ridge-Furrow Plastic Film Mulching in Northwest China

期刊

AGRONOMY-BASEL
卷 12, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy12122943

关键词

spring maize; field management practices; nitrogen fertilizers; grain yield; water-nitrogen use efficiency

向作者/读者索取更多资源

The study found that ridge-furrow planting with N4 fertilizer was more effective in increasing maize yield, water use efficiency, and nitrogen partial factor productivity. RFN4 consistently performed the best over two growing seasons, making it an effective planting system for maize production in rain-fed agriculture.
Improving water use efficiency is essential for the advancement of agricultural production, particularly in arid and semiarid regions. Two-year field experiments were conducted to study the effects of ridge-furrow (RF) and flat planting (FP) plastic film mulching combined with five different nitrogen (N) fertilizers, N1 (KNO3), the nitrate (NO3-)/ammonium (NH4+) mixtures with different pure nitrogen ratios N2 (1:1), N3 (1:3), and N4 (3:1), and the control N5 (urea) on maize dry matter accumulation, soil water content, grain yield, water use efficiency (WUE), and N partial factor productivity. Our results showed that RF and N4 were more efficient than FP for increasing maize grain yield, WUE, and nitrogen partial factor productivity, and there was a significant interaction for cultivation practices x N formulation. RF and 3:1 NO3-/NH4+ significantly increased grain yield by 14.73% and 13.15%, and 20.07% and 24.14% in 2016 and 2017, respectively, compared to FP and nitrate only. RFN4 produced the highest grain yield in 2016 and 2017 due to the highest dry matter accumulation at filling and physiological maturity stage, ear rows per spike, and row grains per row. Over two growing seasons, the WUE and N partial factor productivity under RFN4 were 18.75% and 29.17% more on average than those of other treatments. Therefore, RFN4 is an effective planting system for increasing the simultaneity of grain yield and WUE for maize production in rain-fed agriculture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据