4.7 Article

Drought and Waterlogging Status and Dominant Meteorological Factors Affecting Maize (Zea mays L.) in Different Growth and Development Stages in Northeast China

期刊

AGRONOMY-BASEL
卷 13, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy13020374

关键词

Zea mays L; drought; waterlogging; crop water requirement; crop water surplus; deficit index; Northeast China

向作者/读者索取更多资源

Drought and floods have significant impacts on maize growth and yield, posing a threat to food security. This study examined the drought and waterlogging conditions of spring maize in Northeast China using phenology, meteorological data, and spatial analysis. Results showed a decrease in effective precipitation in the region. Maize water requirements varied across different growth stages, with the highest demand during the flowering and silking stages. The study also identified the areas most prone to drought and waterlogging, providing valuable information for selecting drought-resistant varieties and implementing prevention measures.
Drought and floods affect the growth and yield of maize, affecting food security. Therefore, it is crucial to assess maize's drought and waterlogging status in various growth stages. We used phenological and daily meteorological data and spatial analysis to identify the drought and waterlogging conditions of spring maize in Northeast China in eight growth stages. We calculated the crop water surplus/deficit index and used the national standard for maize drought and waterlogging. The results indicate a significant decreasing trend of effective precipitation in Northeast China. The maize's water requirements changed during the growing period. The ranking of the daily water requirements of maize from high to low in the different growth stages was the flowering stage to the silking stage (6.9 mm/d), the tasseling stage to the flowering stage (6.1 mm/d), the jointing stage to the tasseling stage (4.9 mm/d), the seven-leaf stage to the jointing stage (3.4 mm/d), the silking stage to the harvesting stage (2.0 mm/d), the emergence stage to the three-leaf stage (1.4 mm/d), the three-leaf stage to the seven-leaf stage (1.3 mm/d), and the sowing stage to the emergence stage (1.2 mm/d). Drought occurred primarily in the early growth and development stage, and the most severe drought conditions were observed in the sowing to emergence stages and the emergence to the three-leaf stages in most areas in Northeast China. Waterlogging occurred predominantly in the flowering to the silking stages and the silking to the maturity stages in southeast Liaoning and parts of Jilin. Inner Mongolia had the lowest soil moisture conditions and was unsuitable for maize growth, followed by Heilongjiang, Jilin, and Liaoning. The dominant meteorological factors affecting the drought and waterlogging status of maize in different growth stages were precipitation and wind speed, followed by the minimum temperature, relative humidity, sunshine hours, and maximum temperature. The average temperature did not influence the drought and waterlogging status. The results provide a basis for selecting drought-resistant varieties and preventing waterlogging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据